Effective Feature Fusion Network in BIFPN for Small Object Detection

Author(s):  
Jun Chen ◽  
HongSheng Mai ◽  
Linbo Luo ◽  
Xiaoqiang Chen ◽  
Kangle Wu
Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3031
Author(s):  
Jing Lian ◽  
Yuhang Yin ◽  
Linhui Li ◽  
Zhenghao Wang ◽  
Yafu Zhou

There are many small objects in traffic scenes, but due to their low resolution and limited information, their detection is still a challenge. Small object detection is very important for the understanding of traffic scene environments. To improve the detection accuracy of small objects in traffic scenes, we propose a small object detection method in traffic scenes based on attention feature fusion. First, a multi-scale channel attention block (MS-CAB) is designed, which uses local and global scales to aggregate the effective information of the feature maps. Based on this block, an attention feature fusion block (AFFB) is proposed, which can better integrate contextual information from different layers. Finally, the AFFB is used to replace the linear fusion module in the object detection network and obtain the final network structure. The experimental results show that, compared to the benchmark model YOLOv5s, this method has achieved a higher mean Average Precison (mAP) under the premise of ensuring real-time performance. It increases the mAP of all objects by 0.9 percentage points on the validation set of the traffic scene dataset BDD100K, and at the same time, increases the mAP of small objects by 3.5%.


Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3630 ◽  
Author(s):  
Young-Joon Hwang ◽  
Jin-Gu Lee ◽  
Un-Chul Moon ◽  
Ho-Hyun Park

The single shot multi-box detector (SSD) exhibits low accuracy in small-object detection; this is because it does not consider the scale contextual information between its layers, and the shallow layers lack adequate semantic information. To improve the accuracy of the original SSD, this paper proposes a new single shot multi-box detector using trident feature and squeeze and extraction feature fusion (SSD-TSEFFM); this detector employs the trident network and the squeeze and excitation feature fusion module. Furthermore, a trident feature module (TFM) is developed, inspired by the trident network, to consider the scale contextual information. The use of this module makes the proposed model robust to scale changes owing to the application of dilated convolution. Further, the squeeze and excitation block feature fusion module (SEFFM) is used to provide more semantic information to the model. The SSD-TSEFFM is compared with the faster regions with convolution neural network features (RCNN) (2015), SSD (2016), and DF-SSD (2020) on the PASCAL VOC 2007 and 2012 datasets. The experimental results demonstrate the high accuracy of the proposed model in small-object detection, in addition to a good overall accuracy. The SSD-TSEFFM achieved 80.4% mAP and 80.2% mAP on the 2007 and 2012 datasets, respectively. This indicates an average improvement of approximately 2% over other models.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1536
Author(s):  
Deng Jiang ◽  
Bei Sun ◽  
Shaojing Su ◽  
Zhen Zuo ◽  
Peng Wu ◽  
...  

Deep learning methods have significantly improved object detection performance, but small object detection remains an extremely difficult and challenging task in computer vision. We propose a feature fusion and spatial attention-based single shot detector (FASSD) for small object detection. We fuse high-level semantic information into shallow layers to generate discriminative feature representations for small objects. To adaptively enhance the expression of small object areas and suppress the feature response of background regions, the spatial attention block learns a self-attention mask to enhance the original feature maps. We also establish a small object dataset (LAKE-BOAT) of a scene with a boat on a lake and tested our algorithm to evaluate its performance. The results show that our FASSD achieves 79.3% mAP (mean average precision) on the PASCAL VOC2007 test with input 300 × 300, which outperforms the original single shot multibox detector (SSD) by 1.6 points, as well as most improved algorithms based on SSD. The corresponding detection speed was 45.3 FPS (frame per second) on the VOC2007 test using a single NVIDIA TITAN RTX GPU. The test results of a simplified FASSD on the LAKE-BOAT dataset indicate that our model achieved an improvement of 3.5% mAP on the baseline network while maintaining a real-time detection speed (64.4 FPS).


Author(s):  
Tripop Tongboonsong ◽  
Akkarat Boonpoonga ◽  
Kittisak Phaebua ◽  
Titipong Lertwiriyaprapa ◽  
Lakkhana Bannawat

Sign in / Sign up

Export Citation Format

Share Document