Three-dimensional quantum cellular neural network and its application to image processing

Author(s):  
Sen Wang ◽  
Li Cai ◽  
Huanqing Cui ◽  
Chaowen Feng ◽  
Xiaokuo Yang
Author(s):  
J. Álvaro Fernández

Since its seminal publication in 1988, the Cellular Neural Network (CNN) (Chua & Yang, 1988) paradigm have attracted research community’s attention, mainly because of its ability for integrating complex computing processes into compact, real-time programmable analogic VLSI circuits (Rodríguez et al., 2004). Unlike cellular automata, the CNN model hosts nonlinear processors which, from analogic array inputs, in continuous time, generate analogic array outputs using a simple, repetitive scheme controlled by just a few real-valued parameters. CNN is the core of the revolutionary Analogic Cellular Computer, a programmable system whose structure is the so-called CNN Universal Machine (CNN-UM) (Roska & Chua, 1993). Analogic CNN computers mimic the anatomy and physiology of many sensory and processing organs with the additional capability of data and program storing (Chua & Roska, 2002). This article reviews the main features of this Artificial Neural Network (ANN) model and focuses on its outstanding and more exploited engineering application: Digital Image Processing (DIP).


1995 ◽  
Vol 05 (01) ◽  
pp. 313-320 ◽  
Author(s):  
LADISLAV PIVKA ◽  
ALEXANDER L. ZHELEZNYAK ◽  
CHAI WAH WU ◽  
LEON O. CHUA

This paper reports on the simulation, in three-dimensional cellular-neural-network (CNN) arrays of Chua’s circuits, of basic three-dimensional scroll wave patterns observed previously from other media. Among the simulated patterns are the straight scroll wave, twisted scroll wave in both homogeneous and inhomogeneous media, as well as the scroll ring. These types of waves have been obtained for only one set of circuit parameters by varying the initial conditions.


ETRI Journal ◽  
2013 ◽  
Vol 35 (2) ◽  
pp. 207-217 ◽  
Author(s):  
Mojtaba Karami ◽  
Reza Safabakhsh ◽  
Mohammad Rahmati

Author(s):  
J. Álvaro Fernández

Since its introduction to the research community in 1988, the Cellular Neural Network (CNN) (Chua & Yang, 1988) paradigm has become a fruitful soil for engineers and physicists, producing over 1,000 published scientific papers and books in less than 20 years (Chua & Roska, 2002), mostly related to Digital Image Processing (DIP). This Artificial Neural Network (ANN) offers a remarkable ability of integrating complex computing processes into compact, real-time programmable analogic VLSI circuits as the ACE16k (Rodríguez et al., 2004) and, more recently, into FPGA devices (Perko et al., 2000). CNN is the core of the revolutionary Analogic Cellular Computer (Roska et al., 1999), a programmable system based on the so-called CNN Universal Machine (CNN-UM) (Roska & Chua, 1993). Analogic CNN computers mimic the anatomy and physiology of many sensory and processing biological organs (Chua & Roska, 2002). This article continues the review started in this Encyclopaedia under the title Basic Cellular Neural Network Image Processing.


2013 ◽  
Vol 427-429 ◽  
pp. 2013-2017
Author(s):  
Sheng Zhuo Yao ◽  
Guo Dong Li ◽  
Fu Xin Zhang ◽  
Lin Ge

Road quality information detect system is an important component in architecture quality detect system, also is the basement of successfully working of other related project for the whole country. The study of detecting the road crack is the key to insure the security of accurately detect the road quality in transportation system. In this paper, we come up with a fixed way of road undersized rift image detection by using cellular neural networks. By image processing, building rift networks and details networks and adding the model of similarity undersized rift networks. It can avoid the problem that can not accurately detect undersized crack by only taking the crack feature value. The experiment proved that fixed crack detect computing is easy to do, more accurate to detect the undersized cracks on the road and can reach the standard level of current detect technique.


Sign in / Sign up

Export Citation Format

Share Document