Research on Residual Stress Measurement Technology of Aluminum Alloy Plate Based on Modified Layer Removal Method

Author(s):  
Hai Gong ◽  
Yunxin Wu ◽  
Liao Kai
2011 ◽  
Vol 519 (10) ◽  
pp. 3249-3253 ◽  
Author(s):  
L.M. Jiang ◽  
J. Peng ◽  
Y.G. Liao ◽  
Y.C. Zhou ◽  
J. Liang ◽  
...  

2021 ◽  
Vol 1199 (1) ◽  
pp. 012060
Author(s):  
M Geľatko ◽  
M Hatala ◽  
R Vandžura ◽  
F Botko

Abstract The article deals with the state-of-the-art in the field of Longitudinal critically refracted (LCR) ultrasonic wave, for non-destructive material evaluation. It checks its capability for residual stress identification, and reviews positives and negatives related to its use. Obtained information within the article, are used for the understanding of essence of method and for the evaluation of its use in the engineering practice. The article can be the source of information about the LCR wave measurement technology, which is the part of the complex ultrasonic testing method. For the frequency of using this technology for surface residual stress measurement, it is appropriate to have this information in one whole, which are gathered of the outputs of researches by various authors. The paper is divided in few sections and sub-sections. In the first section, information about LCR wave technique and factors correlated with this method, are provided. The next section writes about residual stresses and the importance of their identification. Next, the principal of residual stresses measurement and basic structure of measurement device, is described. A significant part of study, describes the state so far of theoretical and practical researches within the use of this method, in the technological practice of residual stress identification in surface layers of engineering components. In the conclusion, obtained knowledges are summarised and evaluated. Related positive and negative aspects are included, with a verifying the need of future researches.


Ultrasonics ◽  
2020 ◽  
Vol 107 ◽  
pp. 106164
Author(s):  
Qinglong Zhang ◽  
Lei Yu ◽  
Xiaofeng Shang ◽  
Su Zhao

Author(s):  
H. W. Carpenter ◽  
R. G. Reid ◽  
R. Paskaramoorthy

A comparison is presented between the sensitivity to measurement error of the crack compliance and layer removal methods of residual stress measurement when applied to glass fiber reinforced plastic (GFRP) pipes. This is done by adding random scatter to the exact strain distribution associated with a known stress distribution. This defines strain data that simulate experimental measurements. These data are used to determine the corresponding residual stress distributions. The error in the residual stress distribution when scatter is included can thereby be determined. It is shown that the layer removal and crack compliance methods are equally suitable for the measurement of axial and circumferential stresses in a pipe wound at only ±55 deg. The layer removal method, however, is shown to have significantly lower sensitivity to measurement error when the axial residual stresses in layered GFRP pipes are considered.


Sign in / Sign up

Export Citation Format

Share Document