Exponential stabilization of nonlinear switched systems with actuator saturation

Author(s):  
Yun Wang ◽  
Jie Lian ◽  
Hongwei Wang ◽  
Xiaona Wang
Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Yongzhao Wang

This paper deals with the exponential stabilization problem for a class of nonlinear switched systems with mixed delays under asynchronous switching. The switching signal of the switched controller involves delay, which results in the asynchronous switching between the candidate controllers and subsystems. By constructing the parameter-dependent Lyapunov-Krasovskii functional and the average dwell time approach, some sufficient conditions in forms of linear matrix inequalities are presented to ensure the exponential stability of the switched nonlinear system under arbitrary switching signals. In addition, through the special deformation of the matrix and Schur complement, the controllers with asynchronous switching are designed. Finally, a numerical example and a practical example of river pollution control are provided to show the validity and potential of the developed results.


Author(s):  
Lingcong Nie ◽  
Xindi Xu ◽  
Yan Li ◽  
Weiyu Jiang ◽  
Yiwen Qi ◽  
...  

This paper investigates adaptive event-triggered [Formula: see text] control for network-based master-slave switched systems subject to actuator saturation and data injection attacks. It is an important and unrecognised issue that the switching signal is affected from both event-triggering scheme and network attacks. An adaptive event-triggering scheme is proposed that can adjust the triggering frequency through a variable threshold based on system performance. Furthermore, considering the impacts of transmission delays and actuator saturation, an event-triggered time-delay error switched system is developed. Subsequently, by utilizing piecewise Lyapunov functional technique, sufficient conditions are derived to render the time-delay error switched system to have an [Formula: see text] performance level. In particular, the coupling between switching instants and data updating instants is analyzed during the system performance analysis. Moreover, sufficient conditions for the desired state-feedback controller gains and event-triggering parameter are presented. Finally, a numerical example is given to verify the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document