Intelligent Tracking Control for Linear Ultrasonic Motor Using H>sup<∞>/sup<Control Technique

Author(s):  
Ya-Fu Peng ◽  
Chun-Fei Hsu ◽  
Chih-Min Lin ◽  
Ming-Hung Lin
AIP Advances ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 025238
Author(s):  
Danhong Lu ◽  
Qiuxiang Lin ◽  
Yanxiang Han ◽  
Bingxun Chen ◽  
Chunrong Jiang ◽  
...  

2021 ◽  
Vol 01 (01) ◽  
pp. 2150001
Author(s):  
Jianye Gong ◽  
Yajie Ma ◽  
Bin Jiang ◽  
Zehui Mao

In this paper, the adaptive fault-tolerant formation tracking control problem for a set of heterogeneous unmanned aerial vehicle (UAV) and unmanned ground vehicle (UGV) systems with actuator loss of effectiveness faults is investigated. The cooperative fault-tolerant formation control strategy for UAV and UGV collaborative systems is classified into the altitude consensus control scheme for follower UAVs and the position cooperative formation control scheme for all followers. The altitude consensus control algorithm is designed by utilizing backstepping control technique to drive all UAVs to a desired predefined height. Then, based on synchronization formation error information, the position cooperative formation control algorithm is proposed for all followers to reach the expected position and perform the desired formation configuration. The adaptive fault estimation term is adopted in the designed fault-tolerant formation control algorithm to compensate for the actuator loss of effectiveness fault. Finally, a simulation example is proposed to reveal the validity of the designed cooperative formation tracking control scheme.


Author(s):  
Yohan Díaz-Méndez ◽  
Leandro Diniz de Jesus ◽  
Marcelo Santiago de Sousa ◽  
Sebastião Simões Cunha ◽  
Alexandre Brandão Ramos

Sliding mode control (SMC) is a widely used control law for quadrotor regulation and tracking control problems. The purpose of this article is to solve the tracking problem of quadrotors using a relatively novel nonlinear control law based on SMC that makes use of a conditional integrator. It is demonstrated by a motivation example that the proposed control law can improve the transient response and chattering shortcomings of the previous approaches of similar SMC based controllers. The adopted Newton–Euler model of quadrotor dynamics and controller design is treated separately in two subsystems: attitude and position control loops. The stability of the control technique is demonstrated by Lyapunov’s analysis and the effectiveness and performance of the proposed method are compared with a similar integral law, also based on SMC, and validated by tracking control problems using numerical simulations. Simulations were developed in the presence of external disturbances in order to evaluate the controller robustness. The effectiveness of the proposed controller was verified by performance indexes, demonstrating less accumulated tracking errors and control activity and improvement in the transient response and disturbance rejection when compared to a conventional integrator sliding mode controller.


IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 57249-57256 ◽  
Author(s):  
Shaopeng He ◽  
Shengjun Shi ◽  
Yunhe Zhang ◽  
Weishan Chen

2018 ◽  
Vol 89 (8) ◽  
pp. 085001 ◽  
Author(s):  
Pingqing Fan ◽  
Xuecheng Shu ◽  
Tao Yuan ◽  
Chaodong Li

Sign in / Sign up

Export Citation Format

Share Document