Fractional-order Modeling and Control of Power System Stabilizer

Author(s):  
Arti V. Tare ◽  
Lakesh D. Mahajan ◽  
Vijay N. Pande ◽  
Vishwesh A. Vyawahare
2014 ◽  
Vol 1070-1072 ◽  
pp. 892-896
Author(s):  
Fu Xia Wu ◽  
Jian Rong Gong ◽  
Jun Xie ◽  
Ying Jun Wu

Power system stabilizer in a power system is a closed-loop controller. The conventional participation factor method just considers the effect of PSS input signal. When the system stress is heavier, it may give misleading results. Based on the participation factor of modal analysis, an integrative participation factor is proposed to determine the optimum PSS location. The integrative participation factor takes into account both the input and control effect of PSS controllers. The case studied in 2-area 4-generator power system power system confirms that the integrative participation factor is more reasonable and effective than the participation factor method.


Author(s):  
M. A. Abdel Ghany ◽  
Mohamed A. Shamseldin

<p><span lang="EN-US">This paper presents a novel approach of self-tuning for a Modified Fractional Order PID (MFOPID) depends on the Model Reference Adaptive System (MRAS). The proposed self-tuning controller is applied to Power System Stabilizer (PSS). Takaji-Sugeno (TS) fuzzy logic technique is used to construct the MFOPID controller. The objective of MRAS is to update the five parameters of Takaji-Sugeno Modified FOPID (TSMFOPID) controller online. For different operating points of PSS, MRAS is applied to investigate the effectiveness of proposed controllers. The harmony optimization technique used to obtain the optimal parameters of TSMFOPID controllers and MRAS parameters. For different operating points with different disturbance under parameters variations the simulation results are obtained. This is to show that Self-Tuning of TSMFOPID based on (MRAS) have better performance than the fixed parameters TSMOFOPID controller.</span></p>


Sign in / Sign up

Export Citation Format

Share Document