Multi-scale Fast Detection of Objects in High Resolution Remote Sensing Images

Author(s):  
Long-Wei Li ◽  
Jiang-Bo Xi ◽  
Wan-Dong Jiang ◽  
Ming Cong ◽  
Ling Han ◽  
...  
Author(s):  
Y. Di ◽  
G. Jiang ◽  
L. Yan ◽  
H. Liu ◽  
S. Zheng

Most of multi-scale segmentation algorithms are not aiming at high resolution remote sensing images and have difficulty to communicate and use layers’ information. In view of them, we proposes a method of multi-scale segmentation of high resolution remote sensing images by integrating multiple features. First, Canny operator is used to extract edge information, and then band weighted distance function is built to obtain the edge weight. According to the criterion, the initial segmentation objects of color images can be gained by Kruskal minimum spanning tree algorithm. Finally segmentation images are got by the adaptive rule of Mumford–Shah region merging combination with spectral and texture information. The proposed method is evaluated precisely using analog images and ZY-3 satellite images through quantitative and qualitative analysis. The experimental results show that the multi-scale segmentation of high resolution remote sensing images by integrating multiple features outperformed the software eCognition fractal network evolution algorithm (highest-resolution network evolution that FNEA) on the accuracy and slightly inferior to FNEA on the efficiency.


2020 ◽  
Vol 9 (6) ◽  
pp. 370
Author(s):  
Atakan Körez ◽  
Necaattin Barışçı ◽  
Aydın Çetin ◽  
Uçman Ergün

The detection of objects in very high-resolution (VHR) remote sensing images has become increasingly popular with the enhancement of remote sensing technologies. High-resolution images from aircrafts or satellites contain highly detailed and mixed backgrounds that decrease the success of object detection in remote sensing images. In this study, a model that performs weighted ensemble object detection using optimized coefficients is proposed. This model uses the outputs of three different object detection models trained on the same dataset. The model’s structure takes two or more object detection methods as its input and provides an output with an optimized coefficient-weighted ensemble. The Northwestern Polytechnical University Very High Resolution 10 (NWPU-VHR10) and Remote Sensing Object Detection (RSOD) datasets were used to measure the object detection success of the proposed model. Our experiments reveal that the proposed model improved the Mean Average Precision (mAP) performance by 0.78%–16.5% compared to stand-alone models and presents better mean average precision than other state-of-the-art methods (3.55% higher on the NWPU-VHR-10 dataset and 1.49% higher when using the RSOD dataset).


Optik ◽  
2014 ◽  
Vol 125 (19) ◽  
pp. 5588-5595 ◽  
Author(s):  
Chao Wang ◽  
Ai-Ye Shi ◽  
Xin Wang ◽  
Fang-ming Wu ◽  
Feng-Chen Huang ◽  
...  

2021 ◽  
Author(s):  
Ying Zhou ◽  
Weipeng Jing ◽  
Jian Wang ◽  
Guangsheng Chen ◽  
Rafal Scherer ◽  
...  

2021 ◽  
Vol 13 (17) ◽  
pp. 3362
Author(s):  
Ruchan Dong ◽  
Licheng Jiao ◽  
Yan Zhang ◽  
Jin Zhao ◽  
Weiyan Shen

Deep convolutional neural networks (DCNNs) are driving progress in object detection of high-resolution remote sensing images. Region proposal generation, as one of the key steps in object detection, has also become the focus of research. High-resolution remote sensing images usually contain various sizes of objects and complex background, small objects are easy to miss or be mis-identified in object detection. If the recall rate of region proposal of small objects and multi-scale objects can be improved, it will bring an improvement on the performance of the accuracy in object detection. Spatial attention is the ability to focus on local features in images and can improve the learning efficiency of DCNNs. This study proposes a multi-scale spatial attention region proposal network (MSA-RPN) for high-resolution optical remote sensing imagery. The MSA-RPN is an end-to-end deep learning network with a backbone network of ResNet. It deploys three novel modules to fulfill its task. First, the Scale-specific Feature Gate (SFG) focuses on features of objects by processing multi-scale features extracted from the backbone network. Second, the spatial attention-guided model (SAGM) obtains spatial information of objects from the multi-scale attention maps. Third, the Selective Strong Attention Maps Model (SSAMM) adaptively selects sliding windows according to the loss values from the system’s feedback, and sends the windowed samples to the spatial attention decoder. Finally, the candidate regions and their corresponding confidences can be obtained. We evaluate the proposed network in a public dataset LEVIR and compare with several state-of-the-art methods. The proposed MSA-RPN yields a higher recall rate of region proposal generation, especially for small targets in remote sensing images.


Sign in / Sign up

Export Citation Format

Share Document