Bond Graph Modeling and Simulation of Dynamically Tuned Gyroscope

Author(s):  
Lianchao Zhang ◽  
Dapeng Fan ◽  
Xinliang Pang ◽  
Shixun Fan
Author(s):  
Giovanni Berselli ◽  
Gabriele Vassura

Constant-Force actuators based on Dielectric Elastomers (DE) can be obtained by coupling a DE film with particular compliant frames whose structural properties must be carefully designed. In any case, the practical achievement of a desired force profile can be quite a challenging task owing to the time-dependent phenomena which affect the DE electromechanical response. Within this scenario, a hyper-viscoelastic model of a rectangular Constant-Force actuator is reported. The model, based on the Bond Graph formalism, can be used as an engineering tool when designing and/or controlling actuators which are expected to work under given nominal conditions. Numerical simulations are provided which predicts the system response to fast changes in activation voltage and actuator position as imposed by an external user.


Author(s):  
Morteza Montazeri-Gh ◽  
Seyed Alireza Miran Fashandi

Following the technological advances in recent decades, advanced electronic systems linked to the gas turbine industry are increasingly considered by the designers of this field. For this purpose, new airborne systems in conjunction with jet engines are developed, which are incorporated in many challenging design problems such as control law and configuration design. Thus, a comprehensive modeling structure is needed that can bolster the integrity of the system development such as the bond graph approach, which is known as an efficient method for modeling complicated mechatronic systems. In this paper, modeling and simulation of a jet engine dynamic performance and aircraft motion are achieved based on the bond graph approach. At first, the electric starter bond graph model is constructed and physical relationships governing each engine component are obtained. In the aftermath, the modulated energy fields are developed for the jet engine components. Subsequently, the bond graph model of the engine is numerically simulated and experimentally tested and verified for a small jet engine. Finally, bond graph modeling and simulation of integrated engine and aircraft system is presented. The test results indicate the acceptable accuracy of the modeling approach which can be applied for innovative diagnosis and control systems design.


Sign in / Sign up

Export Citation Format

Share Document