Robust H∞ fault estimation and fault tolerant control for T-S nonlinear systems with time varying delays

Author(s):  
Djamel Eddine Cheridi ◽  
Noura Mansouri
2019 ◽  
Vol 24 (15) ◽  
pp. 11535-11544 ◽  
Author(s):  
Haiying Qi ◽  
Yiran Shi ◽  
Shoutao Li ◽  
Yantao Tian ◽  
Ding-Li Yu ◽  
...  

AbstractThis paper proposes a new fault tolerant control scheme for a class of nonlinear systems including robotic systems and aeronautical systems. In this method, a sliding mode control is applied to maintain system stability under the post-fault dynamics. A neural network is used as on-line estimator to reconstruct the change rate of the fault and compensate for the impact of the fault on the system performance. The control law and the neural network learning algorithms are derived using the Lyapunov method, so that the neural estimator is guaranteed to converge to the fault change rate, while the entire closed-loop system stability and tracking control is guaranteed. Compared with the existing methods, the proposed method achieved fault tolerant control for time-varying fault, rather than just constant fault. This greatly expands the industrial applications of the developed method to enhance system reliability. The main contribution and novelty of the developed method is that the system stability is guaranteed and the fault estimation is also guaranteed for convergence when the system subject to a time-varying fault. A simulation example is used to demonstrate the design procedure and the effectiveness of the method. The simulation results demonstrated that the post-fault is stable and the performance is maintained.


2019 ◽  
Vol 9 (19) ◽  
pp. 4010 ◽  
Author(s):  
Ngoc Phi Nguyen ◽  
Sung Kyung Hong

Fault-tolerant control is becoming an interesting topic because of its reliability and safety. This paper reports an active fault-tolerant control method for a quadcopter unmanned aerial vehicle (UAV) to handle actuator faults, disturbances, and input constraints. A robust fault diagnosis based on the H ∞ scheme was designed to estimate the magnitude of a time-varying fault in the presence of disturbances with unknown upper bounds. Once the fault estimation was complete, a fault-tolerant control scheme was proposed for the attitude system, using adaptive sliding mode backstepping control to accommodate the actuator faults, despite actuator saturation limitation and disturbances. The Lyapunov theory was applied to prove the robustness and stability of the closed-loop system under faulty operation. Simulation results show the effectiveness of the fault diagnosis scheme and proposed controller for handling actuator faults.


Sign in / Sign up

Export Citation Format

Share Document