A new time series prediction algorithm based on moving average of nth-order difference

Author(s):  
Yang Lan ◽  
Daniel Neagu
Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 141
Author(s):  
Jacob Hale ◽  
Suzanna Long

Energy portfolios are overwhelmingly dependent on fossil fuel resources that perpetuate the consequences associated with climate change. Therefore, it is imperative to transition to more renewable alternatives to limit further harm to the environment. This study presents a univariate time series prediction model that evaluates sustainability outcomes of partial energy transitions. Future electricity generation at the state-level is predicted using exponential smoothing and autoregressive integrated moving average (ARIMA). The best prediction results are then used as an input for a sustainability assessment of a proposed transition by calculating carbon, water, land, and cost footprints. Missouri, USA was selected as a model testbed due to its dependence on coal. Of the time series methods, ARIMA exhibited the best performance and was used to predict annual electricity generation over a 10-year period. The proposed transition consisted of a one-percent annual decrease of coal’s portfolio share to be replaced with an equal share of solar and wind supply. The sustainability outcomes of the transition demonstrate decreases in carbon and water footprints but increases in land and cost footprints. Decision makers can use the results presented here to better inform strategic provisioning of critical resources in the context of proposed energy transitions.


Author(s):  
Guo Yangming ◽  
Zhang Lu ◽  
Li Xiaolei ◽  
Ran Congbao ◽  
Ma Jiezhong

Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Yuting Bai ◽  
Xuebo Jin ◽  
Xiaoyi Wang ◽  
Tingli Su ◽  
Jianlei Kong ◽  
...  

The prediction information has effects on the emergency prevention and advanced control in various complex systems. There are obvious nonlinear, nonstationary, and complicated characteristics in the time series. Moreover, multiple variables in the time-series impact on each other to make the prediction more difficult. Then, a solution of time-series prediction for the multivariate was explored in this paper. Firstly, a compound neural network framework was designed with the primary and auxiliary networks. The framework attempted to extract the change features of the time series as well as the interactive relation of multiple related variables. Secondly, the structures of the primary and auxiliary networks were studied based on the nonlinear autoregressive model. The learning method was also introduced to obtain the available models. Thirdly, the prediction algorithm was concluded for the time series with multiple variables. Finally, the experiments on environment-monitoring data were conducted to verify the methods. The results prove that the proposed method can obtain the accurate prediction value in the short term.


2019 ◽  
Vol 4 (3) ◽  
pp. 2807-2814 ◽  
Author(s):  
Chin-Yi Lin ◽  
Yu-Ming Hsieh ◽  
Fan-Tien Cheng ◽  
Hsien-Cheng Huang ◽  
Muhammad Adnan

2019 ◽  
Vol 496 ◽  
pp. 506-537 ◽  
Author(s):  
Jianguo Chen ◽  
Kenli Li ◽  
Huigui Rong ◽  
Kashif Bilal ◽  
Keqin Li ◽  
...  

2012 ◽  
Author(s):  
Ruhaidah Samsudin ◽  
Puteh Saad ◽  
Ani Shabri

In this paper, time series prediction is considered as a problem of missing value. A model for the determination of the missing time series value is presented. The hybrid model integrating autoregressive intergrated moving average (ARIMA) and artificial neural network (ANN) model is developed to solve this problem. The developed models attempts to incorporate the linear characteristics of an ARIMA model and nonlinear patterns of ANN to create a hybrid model. In this study, time series modeling of rice yield data in Muda Irrigation area. Malaysia from 1995 to 2003 are considered. Experimental results with rice yields data sets indicate that the hybrid model improve the forecasting performance by either of the models used separately. Key words: ARIMA; Box and Jenkins; neural networks; rice yields; hybrid ANN model


Sign in / Sign up

Export Citation Format

Share Document