Image Watermarking with Region of Interest Determination Using Deep Neural Networks

Author(s):  
Mahnoosh Bagheri ◽  
Majid Mohrekesh ◽  
Nader Karimi ◽  
Shadrokh Samavi ◽  
Shahram Shirani ◽  
...  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Filippo Simini ◽  
Gianni Barlacchi ◽  
Massimilano Luca ◽  
Luca Pappalardo

AbstractThe movements of individuals within and among cities influence critical aspects of our society, such as well-being, the spreading of epidemics, and the quality of the environment. When information about mobility flows is not available for a particular region of interest, we must rely on mathematical models to generate them. In this work, we propose Deep Gravity, an effective model to generate flow probabilities that exploits many features (e.g., land use, road network, transport, food, health facilities) extracted from voluntary geographic data, and uses deep neural networks to discover non-linear relationships between those features and mobility flows. Our experiments, conducted on mobility flows in England, Italy, and New York State, show that Deep Gravity achieves a significant increase in performance, especially in densely populated regions of interest, with respect to the classic gravity model and models that do not use deep neural networks or geographic data. Deep Gravity has good generalization capability, generating realistic flows also for geographic areas for which there is no data availability for training. Finally, we show how flows generated by Deep Gravity may be explained in terms of the geographic features and highlight crucial differences among the three considered countries interpreting the model’s prediction with explainable AI techniques.


Entropy ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 198 ◽  
Author(s):  
Vedran Vukotić ◽  
Vivien Chappelier ◽  
Teddy Furon

Image watermarking is usually decomposed into three steps: (i) a feature vector is extracted from an image; (ii) it is modified to embed the watermark; (iii) and it is projected back into the image space while avoiding the creation of visual artefacts. This feature extraction is usually based on a classical image representation given by the Discrete Wavelet Transform or the Discrete Cosine Transform for instance. These transformations require very accurate synchronisation between the embedding and the detection and usually rely on various registration mechanisms for that purpose. This paper investigates a new family of transformation based on Deep Neural Networks trained with supervision for a classification task. Motivations come from the Computer Vision literature, which has demonstrated the robustness of these features against light geometric distortions. Also, adversarial sample literature provides means to implement the inverse transform needed in the third step above mentioned. As far as zero-bit watermarking is concerned, this paper shows that this approach is feasible as it yields a good quality of the watermarked images and an intrinsic robustness. We also tests more advanced tools from Computer Vision such as aggregation schemes with weak geometry and retraining with a dataset augmented with classical image processing attacks.


Author(s):  
Alex Hernández-García ◽  
Johannes Mehrer ◽  
Nikolaus Kriegeskorte ◽  
Peter König ◽  
Tim C. Kietzmann

2018 ◽  
Author(s):  
Chi Zhang ◽  
Xiaohan Duan ◽  
Ruyuan Zhang ◽  
Li Tong

Sign in / Sign up

Export Citation Format

Share Document