A neural network for model order selection in signal processing

Author(s):  
P. Costa-Hirschauer ◽  
J. Grouffaud ◽  
P. Larzabal ◽  
H. Clergeot
2021 ◽  
Author(s):  
Saeed Pouryazdian

Electroencephalogram (EEG) is widely used for monitoring, diagnosis purposes and also for study of brains physiological, mental and functional abnormalities. EEG is known to be a high-dimensional signal in which processing of information by the brain is reected in dynamical changes of the electrical activity in time, frequency, and space. EEG signal processing tends to describe and quantify these variations into functions with known spatio-temporal-spectral properties or at least easier to characterize. Multi-channel EEG recordings naturally include multiple modes. Matrix analysis, via stacking or concatenating other modes with the retained two modes, has been extensively used to represent and analyze the EEG data. On the other hand, Multi-way (tensor) analysis techniques keep the structure of the data, and by analyzing more dimensions simultaneously, summarize the data into more interpretable components. This work presents a generalized multi-way array analysis methodology in pattern classification systems as related to source separation and discriminant feature selection in EEG signal processing problems. Analysis of ERPs, as one of the main categories of EEG signals, requires systems that can exploit the variation of the signals in different contextual domains in order to reveal the hidden structures in the data. Temporal, spectral, spatial, and subjects/experimental conditions of multi-channel ERP signals are exploited here to generate three-way and four-way ERP tensors. Two key elements of this framework are the Time-Frequency representation (TFR) and CANDECOMP/PARAFAC model order selection techniques we incorporate for analysis. Here, we propose a fully data-driven TFR scheme, via combining the Empirical Mode Decomposition and Reassignment method, which yields a high resolution and cross-term free TFR. Furthermore, we develop a robust and effective model order selection scheme that outperforms conventional techniques in mid and low SNRs (i.e. 0􀀀10 dB) with a better Probability of Detection (PoD) and almost no extra computational overhead after the CANDECOMP/PARAFAC decomposition. ERP tensor can be regarded as a mixture that includes different kinds of brain activity, artifacts, interference, and noise. Using this framework, the desired brain activity could be extracted out from the mixture. The extracted signatures are then translated for different applications in brain-computer interface and cognitive neuroscience.


2021 ◽  
Author(s):  
Saeed Pouryazdian

Electroencephalogram (EEG) is widely used for monitoring, diagnosis purposes and also for study of brains physiological, mental and functional abnormalities. EEG is known to be a high-dimensional signal in which processing of information by the brain is reected in dynamical changes of the electrical activity in time, frequency, and space. EEG signal processing tends to describe and quantify these variations into functions with known spatio-temporal-spectral properties or at least easier to characterize. Multi-channel EEG recordings naturally include multiple modes. Matrix analysis, via stacking or concatenating other modes with the retained two modes, has been extensively used to represent and analyze the EEG data. On the other hand, Multi-way (tensor) analysis techniques keep the structure of the data, and by analyzing more dimensions simultaneously, summarize the data into more interpretable components. This work presents a generalized multi-way array analysis methodology in pattern classification systems as related to source separation and discriminant feature selection in EEG signal processing problems. Analysis of ERPs, as one of the main categories of EEG signals, requires systems that can exploit the variation of the signals in different contextual domains in order to reveal the hidden structures in the data. Temporal, spectral, spatial, and subjects/experimental conditions of multi-channel ERP signals are exploited here to generate three-way and four-way ERP tensors. Two key elements of this framework are the Time-Frequency representation (TFR) and CANDECOMP/PARAFAC model order selection techniques we incorporate for analysis. Here, we propose a fully data-driven TFR scheme, via combining the Empirical Mode Decomposition and Reassignment method, which yields a high resolution and cross-term free TFR. Furthermore, we develop a robust and effective model order selection scheme that outperforms conventional techniques in mid and low SNRs (i.e. 0􀀀10 dB) with a better Probability of Detection (PoD) and almost no extra computational overhead after the CANDECOMP/PARAFAC decomposition. ERP tensor can be regarded as a mixture that includes different kinds of brain activity, artifacts, interference, and noise. Using this framework, the desired brain activity could be extracted out from the mixture. The extracted signatures are then translated for different applications in brain-computer interface and cognitive neuroscience.


2016 ◽  
Vol 2016 ◽  
pp. 1-15
Author(s):  
N. Vanello ◽  
E. Ricciardi ◽  
L. Landini

Independent component analysis (ICA) of functional magnetic resonance imaging (fMRI) data can be employed as an exploratory method. The lack in the ICA model of strong a priori assumptions about the signal or about the noise leads to difficult interpretations of the results. Moreover, the statistical independence of the components is only approximated. Residual dependencies among the components can reveal informative structure in the data. A major problem is related to model order selection, that is, the number of components to be extracted. Specifically, overestimation may lead to component splitting. In this work, a method based on hierarchical clustering of ICA applied to fMRI datasets is investigated. The clustering algorithm uses a metric based on the mutual information between the ICs. To estimate the similarity measure, a histogram-based technique and one based on kernel density estimation are tested on simulated datasets. Simulations results indicate that the method could be used to cluster components related to the same task and resulting from a splitting process occurring at different model orders. Different performances of the similarity measures were found and discussed. Preliminary results on real data are reported and show that the method can group task related and transiently task related components.


Sign in / Sign up

Export Citation Format

Share Document