Design of interference system for portable Fourier transform infrared gas analyzer

Author(s):  
Zhenwei Shan ◽  
Yanqing Qiu ◽  
Bangning Mao
2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Yuntao Liang ◽  
Xiaojun Tang ◽  
Xuliang Zhang ◽  
Fuchao Tian ◽  
Yong Sun ◽  
...  

Aimed at monitoring emission of organic gases such as CH4, C2H6, C3H8, iso-C4H10, n-C4H10, C2H4, C3H6, C2H2, CO, and CO2, from coal mines, petroleum refineries, and other plants, a Fourier Transform Infrared (FT-IR) spectrometer was used to develop a portable gas analyzer for patrolling and examining gas exhaust. Firstly, structure of the instrument was introduced. Then, a spectral analysis approach was presented. Finally, instrument was tested with standard gases and with actual gases emitted from a petroleum refinery. For the latter test, a gas chromatograph (GC) was used as a reference instrument. The test results showed that the detection limit of every component of analyte was less than 10 × 10−6. The maximum test error of every analyte was less than 15 × 10−6when its practical concentration was no more than 500 × 10−6. A final comparison showed that the result curves of analytes obtained with FT-IR spectrometer almost overlapped with those obtained with GC, and their resulting noise was less than 6.4% when the practical gas concentration was above 100 × 10−6. As a result, our instrument was suitable to be used as a portable instrument for monitoring exhaust gases.


Author(s):  
John A. Reffner ◽  
William T. Wihlborg

The IRμs™ is the first fully integrated system for Fourier transform infrared (FT-IR) microscopy. FT-IR microscopy combines light microscopy for morphological examination with infrared spectroscopy for chemical identification of microscopic samples or domains. Because the IRμs system is a new tool for molecular microanalysis, its optical, mechanical and system design are described to illustrate the state of development of molecular microanalysis. Applications of infrared microspectroscopy are reviewed by Messerschmidt and Harthcock.Infrared spectral analysis of microscopic samples is not a new idea, it dates back to 1949, with the first commercial instrument being offered by Perkin-Elmer Co. Inc. in 1953. These early efforts showed promise but failed the test of practically. It was not until the advances in computer science were applied did infrared microspectroscopy emerge as a useful technique. Microscopes designed as accessories for Fourier transform infrared spectrometers have been commercially available since 1983. These accessory microscopes provide the best means for analytical spectroscopists to analyze microscopic samples, while not interfering with the FT-IR spectrometer’s normal functions.


1996 ◽  
Vol 89 (4) ◽  
pp. 1145-1155
Author(s):  
JACQUES WALRAND ◽  
GHISLAIN BLANQUET ◽  
JEAN-FRANCOIS BLAVIER ◽  
HARALD BREDOHL ◽  
IWAN DUBOIS

2019 ◽  
Vol 7 (SI-TeMIC18) ◽  
Author(s):  
Norhanifah Abdul Rahman ◽  
Matzaini Katon Katon ◽  
Nurina Alya Zulkifli Zulkifli

Automatic Transmission (AT) system is efficient in the aspects of vehicle safety, comfort, reliability and driving performance. The objectives of this paper are to collect the oil samples from AT systems of engine bus according to manufacturer's recommendations and analyse collected oil samples using oil analysis technique. The sample transmission fluid which was taken from the AT gearbox has been experimentally analyzed. The oil samples were taken with an interval of 5,000km, 30,000km, 50,000km, 80,000km, 180,000km and 300,000km for AT bus operation. These samples then have been analyzed by comparing between new and used transmission fluid using Fourier Transform Infrared (FTIR) spectroscopy. Oil analysis by FTIR is a form of Predictive Maintenance (PdM) to avoid major failure in machine elements. Most machine elements are not easily accessible in the transmission system. Having a reliable technique would avoid the needs to open the components unnecessarily, hence, help to prevent catastrophic failure which are very costly, and ease of regular monitoring. In order to identify the major failures of automatic gearbox, forecasts can be made regarding the lube transmission fluid analysis test. By using this test, the minor problems can be determined before they become major failures. At the end of this research, the wear particles profile for interval mileage of AT system was obtained. Keywords: Wear, Automatic Transmission (AT), Transmission fluid, Fourier Transform Infrared (FTIR), Oil analysis.


Sign in / Sign up

Export Citation Format

Share Document