infrared gas analyzer
Recently Published Documents


TOTAL DOCUMENTS

82
(FIVE YEARS 17)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
Vol 53 (2) ◽  
pp. 119-131
Author(s):  
Leandro Galon ◽  
Germani Concenço ◽  
Luciane Renata Agazzi ◽  
Felipe Nonemacher ◽  
Thais Stradioto Melo ◽  
...  

The objective of this study was to assess the competitive ability of canola (Brassicanapus var. oleifera) hybrids in competition with black oat (Avena strigosa) in a subtropical environment. The experiments were conducted in a greenhouse where canola hybrids ‘Hyola 61,’ ‘Hyola 76,’ ‘Hyola 433,’ and ‘Hyola 571’ were tested individually for their competitive performance with black oat. The plant proportion between black oat and the canola hybrid was changed (100%:0%; 75%:25%; 50%:50%; 25%:75%; and 0%:100%) while keeping the total population of plants constant (20 plants plot‑1). Photosynthesis rate (μmol m-2 s-1), internal CO2 concentration (μmol mol-1), and  transpiration rate (mol H2O m-2 s-1) were assessed using an infrared gas analyzer 55 days after emergence. Leaf area (m2 m-2) and dry matter (g m-2) were also assessed on the same day. The data set was analyzed by the replacement series method for competition studies. There was evidence of intense competition between canola and black oat, independent of plant proportion. The competitive ability of canola was distinct among hybrids; Hyola 571 performed better than the others in the competition against black oat. Choosing the most competitive hybrid, such as Hyola 571, helps maintain high canola grain yield levels in areas infested with black oat. Highlights: There is difference in competition among canola hybrids against black oat; Hyola 571 performed better in the competition; Preference should be given for most competitive canola genotypes against weeds, and weed control should be carried out early in the critical period of interference; Aggressiveness is the most preponderant parameter in determining canola genotypes with superior ability in competition against weeds.


2021 ◽  
pp. 073490412110578
Author(s):  
Yumi Matsuyama ◽  
Fumiaki Takahashi

The combustion characteristics of charring wood have been studied experimentally in a well-ventilated environment of a smoke chamber. A numerical simulation has also been performed for a limited case, with the Fire Dynamics Simulator, to estimate the burning environment. A horizontally placed specimen (ponderosa pine) with a moisture content of 0% or 20% is exposed to a radiant flux (25 kW/m2), with or without flaming ignition. Simultaneous measurements of the specimen’s in-depth temperature and the mass loss determine the charring front (rate) at 300 °C and the gasification rate, respectively. These condensed-phase conditions relate directly to real-time variations of gas-phase quantities: the specific optical density of smoke and the concentrations of toxic gases measured by a Fourier transform infrared gas analyzer. In-depth temperature trends are similar whether the flame exists, whereas the smoke and toxicants’ concentrations are substantially different. After the charring front moves through the specimen, the oxidative pyrolysis continues under the irradiation at high temperatures (up to ∼550 °C). Carbon monoxide and acrolein are produced continuously throughout the test, and the results indicate strong correlations. Although char formation of wood is favorable for fire safety, consequent incomplete combustion produces smoke and toxicants.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6664
Author(s):  
Dan Hofstetter ◽  
Eileen Fabian ◽  
A. Gino Lorenzoni

An ammonia gas (NH3) generator was developed to maintain a set concentration of ammonia gas in a controlled environment chamber to study poultry physiological responses to sustained elevated levels of ammonia gas. The goal was to maintain 50 parts per million (ppm) of ammonia gas in a 3.7 m × 4.3 m × 2.4 m (12 ft × 14 ft × 8 ft) controlled environment chamber. The chamber had a 1.5 m3/s (3000 cfm) recirculation system that regulated indoor temperature and humidity levels and a 0.06 m3/s (130 cfm) exhaust fan that exchanged indoor air for fresh outdoor air. The ammonia generator was fabricated by coupling ultrasonic humidifiers with an Arduino-based microcontroller and a metallic oxide MQ-137 ammonia gas sensor. Preliminary evaluation under steady conditions showed the average MQ-137 gas sensor accuracy was within 1.4% of the 65.4 ppm concentration measured using a highly accurate infrared gas analyzer. Further evaluation was performed for a setpoint concentration of 50 ppm where ammonia generator reservoirs were filled with 2% or 10% ammonia liquid. For the system tested, it was found that two generators operating at the same time filled with 3.8 L (1.0 gallon) of 2% ammonia cleaning liquid each (7.6 L or 2.0 gallons total) could maintain a gas level of 49.45 ± 0.79 ppm in the chamber air for a duration of 30 h before refilling was required. One generator filled with 3.8 L of 10% ammonia cleaning liquid could maintain 51.24 ± 1.53 ppm for 195 h. Two ammonia generators were deployed for a six-week animal health experiment in two separate controlled environment chambers. The two ammonia generators maintained an average ammonia concentration of 46.42 ± 3.81 ppm and 45.63 ± 4.95 ppm for the duration of the experiment.


Author(s):  
Xiomara Gaviria-Uribe ◽  
Ngonidzashe Chirinda ◽  
Rolando Barahona-Rosales ◽  
Diana M. Bolívar-Vergara ◽  
Todd Rosenstock ◽  
...  

2020 ◽  
Vol 74 (10) ◽  
pp. 1219-1229 ◽  
Author(s):  
James E. Maslar ◽  
William A. Kimes ◽  
Brent A. Sperling ◽  
Ravindra K. Kanjolia

A nondispersive infrared gas analyzer was demonstrated for investigating metal alkylamide precursor delivery for microelectronics vapor deposition processes. The nondispersive infrared analyzer was designed to simultaneously measure the partial pressure of pentakis(dimethylamido) tantalum, a metal precursor employed in high volume manufacturing vapor deposition processes to deposit tantalum nitride, and dimethylamine, the primary decomposition product of pentakis(dimethylamido) tantalum at typical delivery conditions for these applications. This sensor was based on direct absorption of pentakis(dimethylamido) tantalum and dimethylamine in the fingerprint spectral region. The nondispersive infrared analyzer optical response was calibrated by measuring absorbance as a function of dimethylamine and pentakis(dimethylamido) tantalum density. The difference between the mass of material removed from the ampoule during flow tests as measured gravimetrically and as determined optically, by calculating flow rates from the nondispersive infrared analyzer measurements, was only ≈2 %. The minimum detectable molecular densities for pentakis(dimethylamido) tantalum and dimethylamine were ≈2 × 1013 cm−3 and ≈5 × 1014 cm−3, respectively (with no signal averaging and for a sampling rate of 200 Hz), and the corresponding partial pressures were ≈0.1 Pa and ≈2 Pa for pentakis(dimethylamido) tantalum and dimethylamine, respectively (for an optical flow cell temperature of 93 ℃). Pentakis(dimethylamido) tantalum could be detected at all conditions of this investigation and likely the majority of conditions relevant to high volume manufacturing tantalum nitride deposition. Dimethylamine was not detected at all conditions in this study, because of a lower nondispersive infrared analyzer sensitivity to dimethylamine compared to pentakis(dimethylamido) tantalum and because conditions of this study were selected to minimize DMA production. While this nondispersive infrared gas analyzer was specifically developed for pentakis(dimethylamido) tantalum and dimethylamine, it is suitable for characterizing the vapor delivery of other metal alkylamide precursors and the corresponding amine decomposition products, although in the case of some metal alkylamides a different bandpass filter would be required.


2020 ◽  
Vol 03 (01) ◽  
pp. 57-63
Author(s):  
Janice Dias ◽  

The sugarcane crop isconsidered moderately sensitive to environmental stresses, which results in reduced growth and lower productivity. In addition, there is a need for the application of high doses of nitrogen fertilizer. A potential and agroecologically correct alternative is the use of nitrogen-fixing endophytic bacteria, such as Gluconacetobacter diazotrophicus. However, under conditions of abiotic stress the benefits from this plant-endophyte association can be altered due to the physiology of stress response. The objective of this work was to study the effect of inoculation of G. diazotrophicus by means of the evaluation of the parameters of gas exchange, in sugarcane plants submitted to salt and water stresses. The rates of stomatal conductance, transpiration and liquid photosynthesis were evaluated by means of a portable infrared gas analyzer (IRGA). The results showed that the presence of the bacteria may alter the rates of stomatal conductance and transpiration, interfering in the physiology of response to salinity and drought. Keywords: Endophytic bactéria. Stomatal conductance. Transpiration. Salinity. Drought.


Sign in / Sign up

Export Citation Format

Share Document