fourier transform infrared
Recently Published Documents





2022 ◽  
Vol 13 (1) ◽  
pp. 203-209
Kumara Dhas M ◽  
Vijayaraj K

The Cupric oxide (CuO) nanostructures and Fe doped CuO nanomaterials are synthesized by microwave irradiation method. The effect of Fe doping on the crystal structure, band gap and optical properties of synthesized samples were characterized by using x-ray diffraction, ultraviolet-visible spectrometer, photoluminescence spectrometer and Fourier transform infrared spectrometer. X-ray diffraction study confirms the size of the particle in nanometer. The optical band gap calculated from UV–Vis absorption spectrum, reveals the change in band gap energy due to the presence of dopants. The photoluminescence spectrum suggests that Fe doped CuO nanoparticles may be used in optoelectronic devices. The functional group analysis carried out by Fourier transform infrared spectroscopy confirmed the substitution of Fe in the samples.

Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 232
Hanim Z. Amanah ◽  
Salma Sultana Tunny ◽  
Rudiati Evi Masithoh ◽  
Myoung-Gun Choung ◽  
Kyung-Hwan Kim ◽  

The demand for rapid and nondestructive methods to determine chemical components in food and agricultural products is proliferating due to being beneficial for screening food quality. This research investigates the feasibility of Fourier transform near-infrared (FT-NIR) and Fourier transform infrared spectroscopy (FT-IR) to predict total as well as an individual type of isoflavones and oligosaccharides using intact soybean samples. A partial least square regression method was performed to develop models based on the spectral data of 310 soybean samples, which were synchronized to the reference values evaluated using a conventional assay. Furthermore, the obtained models were tested using soybean varieties not initially involved in the model construction. As a result, the best prediction models of FT-NIR were allowed to predict total isoflavones and oligosaccharides using intact seeds with acceptable performance (R2p: 0.80 and 0.72), which were slightly better than the model obtained based on FT-IR data (R2p: 0.73 and 0.70). The results also demonstrate the possibility of using FT-NIR to predict individual types of evaluated components, denoted by acceptable performance values of prediction model (R2p) of over 0.70. In addition, the result of the testing model proved the model’s performance by obtaining a similar R2 and error to the calibration model.

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Bekinew Kitaw Dejene ◽  
Terefe Belachew Fenta ◽  
Chirato Godana Korra

Purpose The potential for burn injuries arises from contact with a hot surface, flame, hot liquid and steam hazards. The purpose of this study is to develop the flame retardant acrylic and cotton blend textile finished with Enset Ventricosum pseudostem sap (EPS). Design/methodology/approach The two fabric was produced from (30% acrylic with 70% cotton) and (35% acrylic with 65% cotton) blend. The extracted sap was made alkaline and applied on two mordanted blend fabrics. The effect of blend ratio, the concentration of EPS and treatment time on flammability, Flame retardant properties of both the control and the treated fabrics were analyzed in terms of vertical flammability based on the design of the experiment software using central composite design. The air permeability and tensile strength of treated and controlled fabric were measured. Findings The blended fabrics at different blended ratios were flame retardant with an optimized result of burning time 2.902 min and 2.775 min and char length 6.442 cm and 7.332 cm in the warp and weft direction, respectively, at a concentration of 520 ml and time 33.588 min. There was a slight significant change in mechanical strengths and air permeability. The thermal degradation and the pyrolysis of the fabric samples were studied using thermogravimetric analysis and the chemical composition by Fourier-transform infrared spectroscopy abbreviated as Fourier-transform infrared spectroscopy. The wash durability of the treated fabric at different blend ratios was carried out for the optimized sample and the test result shows that the flame retardancy property is durable up to 15 washes. Originality/value Development of flame retardant cotton and acrylic blend textile fabric finish with ESP was studied; this work provides application of EPS for flame resistance which is optimized statically and successfully applied for a flame retardant property on cotton-acrylic blend fabric.

Golnaz Jozanikohan ◽  
Mohsen Nosrati Abarghooei

AbstractThe complete characteristics knowledge of clay minerals is necessary in the evaluation studies of hydrocarbon reservoirs. Ten samples taken from two wells in a heterogeneous clastic gas reservoir formation in NE Iran were selected to conduct the transmission Fourier transform infrared spectroscopy (FTIR) tests for the clay mineralogy studies. The FTIR analysis showed that there were clear signs of clay minerals in all samples. The wavenumber region of the clay minerals in FTIR tests was detected to be 3621, 3432, 1034, and 515 cm−1 for illite, 3567, 3432, 1613, 1088, 990, 687, 651, and 515 cm−1 for magnesium-rich chlorite, 3700, 3621, 3432, 1034, 687, and 463 cm−1 for kaolinite, and 3567, 1088, 990, and 463 cm−1 for glauconite. After screening of samples by the FTIR method, the samples were then analyzed by powder X-ray diffraction (PXRD), wavelength dispersive X-ray fluorescence (WDXRF), and scanning electron microscopy (SEM). The PXRD and SEM result showed illite was by far the most common clay present. Kaolinite, magnesium-rich chlorite, and traces of smectite and the mixed-layer clays of both the illite–smectite and chlorite-smectite types were also recognized. The combination of PXRD and WDXRF results could quantify the clay abundances in the each well too. It was concluded that the FTIR analysis successfully could show the absorption bonds of all constituent clays. However, the infrared absorption spectra of mixed-layer clays overlapped those of the respective constituents of each mixed-layer minerals. This can be considered as the evidence of the usefulness of FTIR technique in the screening of the samples for the clay mineralogy studies.

2022 ◽  
Vol 3 (2) ◽  
Gboyega Oluwaseun Oyeleke ◽  
Ibraheem Abimbade Abdulazeez ◽  
Ajisola Agnes Adebisi ◽  
Kehinde Nasiru Oyekanmi ◽  
Segun Olaitan Akinbode

Three solvents of different polarities (water, methanol and 1% NaOHsolution) were used to extract dyes that produced different shades fromdried sunflower (Helianthus annuus) petal. The extraction proceduresusing different solvent types were carried out separately. The dye extractswere thereafter subjected to Fourier Transform Infrared Spectrometry(FT-IR) analysis for characterization in terms of functional groups. Theintensities of the extracted dyes on the shade of colours obtained on piecesof cotton material varied from yellow in methanolic extract to light yellowin aqueous and black in 1% NaOH solution extracts. The results obtainedfrom the FT-IR analysis revealed the presence of several useful functionalgroups such as N-H, C=H, O-H and C=O in the extracts.

Laurent Porot ◽  
Virginie Mouillet ◽  
Alexandros Margaritis ◽  
Hamzeh Haghshenas ◽  
Michael Elwardany ◽  

Sign in / Sign up

Export Citation Format

Share Document