A method for realizing reversible integer type-IV discrete cosine transform (IntDCT-IV)

Author(s):  
H. Huang ◽  
Xiao Lin ◽  
S. Rahardja ◽  
Rongshan Yu
2013 ◽  
Vol 12 (12) ◽  
pp. 6454-6463 ◽  
Author(s):  
Fernando Cruz-Roldan ◽  
M. Elena Dominguez-Jimenez ◽  
Gabriela Sansigre Vidal ◽  
Jose Pineiro-Ave ◽  
Manuel Blanco-Velasco

2011 ◽  
Vol 1 (2) ◽  
Author(s):  
Doru Chiper

AbstractA new VLSI algorithm and its associated systolic array architecture for a prime length type IV discrete cosine transform is presented. They represent the basis of an efficient design approach for deriving a linear systolic array architecture for type IV DCT. The proposed algorithm uses a regular computational structure called pseudoband correlation structure that is appropriate for a VLSI implementation. The proposed algorithm is then mapped onto a linear systolic array with a small number of I/O channels and low I/O bandwidth. The proposed architecture can be unified with that obtained for type IV DST due to a similar kernel. A highly efficient VLSI chip can be thus obtained with good performance in the architectural topology, computing parallelism, processing speed, hardware complexity and I/O costs similar to those obtained for circular correlation and cyclic convolution computational structures.


2004 ◽  
Vol 40 (8) ◽  
pp. 514 ◽  
Author(s):  
H. Huang ◽  
R. Yu ◽  
X. Lin ◽  
S. Rahardja

Author(s):  
Rahul Dixit ◽  
Amita Nandal ◽  
Arvind Dhaka ◽  
Vardan Agarwal ◽  
Yohan Varghese

Background: Nowadays information security is one of the biggest issues of social networks. The multimedia data can be tampered with, and the attackers can then claim its ownership. Image watermarking is a technique that is used for copyright protection and authentication of multimedia. Objective: We aim to create a new and more robust image watermarking technique to prevent illegal copying, editing and distribution of media. Method : The watermarking technique proposed in this paper is non-blind and employs Lifting Wavelet Transform on the cover image to decompose the image into four coefficient matrices. Then Discrete Cosine Transform is applied which separates a selected coefficient matrix into different frequencies and later Singular Value Decomposition is applied. Singular Value Decomposition is also applied to the watermarking image and it is added to the singular matrix of the cover image which is then normalized followed by the inverse Singular Value Decomposition, inverse Discrete Cosine Transform and inverse Lifting Wavelet Transform respectively to obtain an embedded image. Normalization is proposed as an alternative to the traditional scaling factor. Results: Our technique is tested against attacks like rotation, resizing, cropping, noise addition and filtering. The performance comparison is evaluated based on Peak Signal to Noise Ratio, Structural Similarity Index Measure, and Normalized Cross-Correlation. Conclusion: The experimental results prove that the proposed method performs better than other state-of-the-art techniques and can be used to protect multimedia ownership.


Sign in / Sign up

Export Citation Format

Share Document