GPU Resource Sharing and Virtualization on High Performance Computing Systems

Author(s):  
Teng Li ◽  
Vikram K. Narayana ◽  
Esam El-Araby ◽  
Tarek El-Ghazawi
2013 ◽  
Vol 9 (3) ◽  
pp. 1091-1098 ◽  
Author(s):  
Sukalyan Goswami ◽  
Ajanta De Sarkar

Grid computing or computational grid has become a vast research field in academics. It is a promising platform that provides resource sharing through multi-institutional virtual organizations for dynamic problem solving. Such platforms are much more cost-effective than traditional high performance computing systems. Due to the provision of scalability of resources, these days grid computing has become popular in industry as well. However, computational grid has different constraints and requirements to those of traditional high performance computing systems. In order to fully exploit such grid systems, resource management and scheduling are key challenges, where issues of task allocation and load balancing represent a common problem for most grid systems as because the load scenarios of individual grid resources are dynamic in nature. The objective of this paper is to review different existing load balancing algorithms or techniques applicable in grid computing and propose a layered service oriented framework for computational grid to solve the prevailing problem of dynamic load balancing.


Author(s):  
Simon McIntosh–Smith ◽  
Rob Hunt ◽  
James Price ◽  
Alex Warwick Vesztrocy

High-performance computing systems continue to increase in size in the quest for ever higher performance. The resulting increased electronic component count, coupled with the decrease in feature sizes of the silicon manufacturing processes used to build these components, may result in future exascale systems being more susceptible to soft errors caused by cosmic radiation than in current high-performance computing systems. Through the use of techniques such as hardware-based error-correcting codes and checkpoint-restart, many of these faults can be mitigated at the cost of increased hardware overhead, run-time, and energy consumption that can be as much as 10–20%. Some predictions expect these overheads to continue to grow over time. For extreme scale systems, these overheads will represent megawatts of power consumption and millions of dollars of additional hardware costs, which could potentially be avoided with more sophisticated fault-tolerance techniques. In this paper we present new software-based fault tolerance techniques that can be applied to one of the most important classes of software in high-performance computing: iterative sparse matrix solvers. Our new techniques enables us to exploit knowledge of the structure of sparse matrices in such a way as to improve the performance, energy efficiency, and fault tolerance of the overall solution.


Sign in / Sign up

Export Citation Format

Share Document