grid systems
Recently Published Documents


TOTAL DOCUMENTS

1005
(FIVE YEARS 284)

H-INDEX

34
(FIVE YEARS 9)

2022 ◽  
Author(s):  
Gustaf Olsson

Solar photo-voltaic (PV) and wind offer to bring both clean energy and clean water to remote regions and peri-urban areas in the world, outside the conventional electric grids. One out of seven people has no electric power available that would bring light to the home, cook the food, pump to access water and purify or re-use it. Off-grid systems are scalable and can be designed to any size, from household to village and community levels. The renewable energy cost development is remarkable and can make electric power affordable also for the poorest. Renewables promise an end to the era where energy security is closely related to geopolitics. The expenditure is up-front capital cost while “fuel” is free. With renewables, there is no geopolitical pressure where one country has deposits of a fossil fuel while another does not. This book aims to show how clean water and clean energy are reachable for all while contributing to both a better climate and a healthier life. ISBN: 9781789062953 (eBook)


2022 ◽  
Vol 25 (6) ◽  
pp. 741-752
Author(s):  
S. S. Girshin ◽  
E. G. Andreeva ◽  
K. V. Khatsevskiy ◽  
V. M. Trotsenko ◽  
N. A. Melnikov ◽  
...  

The aim is to manage the transmitted reactive power in electrical grids using variable capacitor batteries according to the criterion of minimum energy loss under different annual reactive load schedules and different numbers of variable capacitor sections. The main theoretical relations were obtained by the methods of mathematical modelling and integral calculus using the theory of optimal control. The influence of the power and number of sections in a capacitor battery on energy losses in the grid was estimated using computational experiments. Dependencies for energy losses in a capacitor battery, as well as for reducing energy losses in the grid, were obtained. These expressions are valid for linearized load schedules. It is shown that the dependences of energy losses in a capacitor battery and the reduction of losses in the grid on the section power have inflection points and pass through a maximum. The presence of inflection points is associated with a change in the number of capacitor sections operating throughout the year. The presence of a maximum is explained by the fact that, with an increase in the power of the capacitor battery, its operating time decreases under the complete number of variable sections. It is established that the batteries of static capacitors with two variable sections can reduce energy losses when transmitting reactive power by over 90%. For three- and four-section static capacitors, the loss reduction is close to 100%. The reduction in energy losses increases when approaching maximal levels of annual reactive load. Energy losses in electrical grid systems can be reduced by capacitor batteries with no more than three or four variable sections. In most cases, this can be achieved by two-section capacitor batteries.


2022 ◽  
pp. 1-20
Author(s):  
Safwan Nadweh ◽  
Zeina Barakat

This chapter describes the upcoming technology for electrical power systems that gives the appropriate solution for the integration of the distributed energy resources. In this chapter, different categories of smart grids have been classified, and the advantages, weakness, and opportunities of each one, are given in addition to determining its own operating conditions. Micro-grids are the most common kind of smart grid. It has been classified under different criteria, such as architecture with different topology (connected mode, island mode, etc.) and demand criteria (simple micro grids, multi-DG, utility) and by capacity into simple micro-grid, corporate micro-grid, and independent micro-grid, and by AC/DC type to DC micro-grids, AC micro-grids, Hybrid micro-grids. Finally, most familiar Micro-grid components have been discussed such as an energy management system along with several types of control and communication systems in addition to the economic study of a micro-grids.


2022 ◽  
pp. 942-957
Author(s):  
Adnan Rashid ◽  
Osman Hasan

Smart grids provide a digital upgradation of the conventional power grids by alleviating the power outages and voltage sags that occur due to their inefficient communication technologies and systems. They mainly tend to strengthen the efficiency, performance, and reliability of the traditional grids by establishing a trusted communication link between their different components through routing protocols. The conventional methods, i.e., the computer-based simulations and net testing, for analyzing these routing network protocols are error-prone and thus cannot be relied upon while analyzing the safety-critical smart grid systems. Formal methods can cater for the above-mentioned inaccuracies and thus can be very beneficial in analyzing communication protocols used in smart grids. In order to demonstrate the utilization and effectiveness of formal methods in analyzing smart grid routing protocols, we use the UPPAAL model checker to formally model the ZigBee-based routing protocol. We also verify some of its properties, such as, liveness, collision avoidance and deadlock freeness.


2022 ◽  
pp. 911-923
Author(s):  
Richa Singh ◽  
Arunendra Singh ◽  
Pronaya Bhattacharya

The rapid industrial growth in cyber-physical systems has led to upgradation of the traditional power grid into a network communication infrastructure. The benefits of integrating smart components have brought about security issues as attack perimeter has increased. In this chapter, firstly, the authors train the network on the results generated by the uncompromised grid network result dataset and then extract valuable features by the various system calls made by the kernel on the grid and after that internal operations being performed. Analyzing the metrics and predicting how the call lists are differing in call types, parameters being passed to the OS, the size of the system calls, and return values of the calls of both the systems and identifying benign devices from the compromised ones in the test bed are done. Predictions can be accurately made on the device behavior in the smart grid and calculating the efficiency of correct detection vs. false detection according to the confusion matrix, and finally, accuracy and F-score will be computed against successful anomaly detection behavior.


2021 ◽  
Vol 11 (1) ◽  
pp. 33
Author(s):  
Yihang Chen ◽  
Zening Cao ◽  
Jinxin Wang ◽  
Yan Shi ◽  
Zilong Qin

In the process of global information construction, different fields have built their own discrete global grid systems (DGGS). With the development of big data technology, data exchange, integration, and update have gradually become a trend, as well as the associative integration of different DGGS. Due to the heterogeneity of DGGS and the different encoding rules, how to build the encoding conversion rules and data mapping relationship between the same object in various DGGS is an effective support and key technology to achieve the interoperability of DGGS. As a kind of multipurpose DGGS, the quaternary triangular mesh (QTM) has become an effective spatial framework for constructing the digital earth because of its simple structure. At present, there are many schemes for QTM encoding research, which plays a key role in the development of QTM, but at the same time, it also leads to difficulties in the communication and integration of QTM under different encoding. In order to solve this problem, we explore the characteristics of QTM encoding, and put forward three conversion algorithms: resampling conversion algorithm, hierarchical conversion algorithm, and row–column conversion algorithm.


2021 ◽  
Author(s):  
◽  
Abhi Chatterjee

<p>From job creation to economic development, from security concerns to the full empowerment of women, energy lies at the heart of the Sustainable Development Goals (SDGs) - agreed to by the world’s leaders in September 2015 as part of the 2030 Agenda. In the words of former UN Secretary-General Ban Ki-moon, “Energy is the golden thread that connects economic growth, increased social equity, and an environment that allows the world to thrive." Approximately 1 billion people in the world today have no access to electricity, and the issues are dominating in the remote communities of the developing countries.  Decentralized systems have existed over a couple of decades to provide electricity provisions in the off-grid communities devoid of the necessary energy services. The literature, however, suggests that off-grid systems have failed in delivering the tasks set forth to curb the electricity crisis. The crisis has resulted in communities primarily residing in the remote/islanded areas having lower social and economic status compared to the urban areas with centralized grid connectivity. A further review of the literature points to a lack of a detailed standard framework for cross-sectional evaluation of sustainability and reliability of the off-grid systems, which results in non-uniformity of the universal electricity access.   Given this, the main objective of the thesis is to establish a conceptual framework to improve the design of remote off-grid microgrid systems through a Techno-Economic Assessment (TEA) approach, by implementing a mixed-research approach. The research strategy adopted to advance knowledge and for achieving the objective of the research follows the Technology and Policy Assessment (TPA) approach, developed by the UK Energy Research Centre (UKREC). The research evaluation design involves formative evaluations where questionnaires designed for investigating failure cases of remote microgrids are introduced, and a conceptual framework is developed, based on the lessons learned.   The conceptual framework comprising of modules incorporates essential features of improving the TEA of the remote microgrids and emphasizes on features like stakeholder assessments, sustainability aspects, energy management, and improving energy efficiency as well as overall system autonomy of the rural off-grid systems. Furthermore, following the TPA approach, the conceptual framework has been verified by involving a focus group. IEEE-Sustainable Energy Systems for Developing Communities (SESDC) was involved in the research verification process. The proposed conceptual framework was validated by incorporating a quantitative analysis to situate the research findings.  The research findings in the thesis contribute extensively to the body of knowledge by establishing a standard framework indicating the importance of energy-efficient approaches towards scaling up sustainable remote microgrids for solving energy crisis issues. As it were, the practical contribution of the thesis is critical in identifying and characterizing the dimensions of the Sustainable Developing Goal 7 for “affordable, reliable, sustainable and modern energy for all” and its impact on the other SDGs, thereby enabling progress towards the target 2030 of the United Nations.</p>


2021 ◽  
Author(s):  
◽  
Abhi Chatterjee

<p>From job creation to economic development, from security concerns to the full empowerment of women, energy lies at the heart of the Sustainable Development Goals (SDGs) - agreed to by the world’s leaders in September 2015 as part of the 2030 Agenda. In the words of former UN Secretary-General Ban Ki-moon, “Energy is the golden thread that connects economic growth, increased social equity, and an environment that allows the world to thrive." Approximately 1 billion people in the world today have no access to electricity, and the issues are dominating in the remote communities of the developing countries.  Decentralized systems have existed over a couple of decades to provide electricity provisions in the off-grid communities devoid of the necessary energy services. The literature, however, suggests that off-grid systems have failed in delivering the tasks set forth to curb the electricity crisis. The crisis has resulted in communities primarily residing in the remote/islanded areas having lower social and economic status compared to the urban areas with centralized grid connectivity. A further review of the literature points to a lack of a detailed standard framework for cross-sectional evaluation of sustainability and reliability of the off-grid systems, which results in non-uniformity of the universal electricity access.   Given this, the main objective of the thesis is to establish a conceptual framework to improve the design of remote off-grid microgrid systems through a Techno-Economic Assessment (TEA) approach, by implementing a mixed-research approach. The research strategy adopted to advance knowledge and for achieving the objective of the research follows the Technology and Policy Assessment (TPA) approach, developed by the UK Energy Research Centre (UKREC). The research evaluation design involves formative evaluations where questionnaires designed for investigating failure cases of remote microgrids are introduced, and a conceptual framework is developed, based on the lessons learned.   The conceptual framework comprising of modules incorporates essential features of improving the TEA of the remote microgrids and emphasizes on features like stakeholder assessments, sustainability aspects, energy management, and improving energy efficiency as well as overall system autonomy of the rural off-grid systems. Furthermore, following the TPA approach, the conceptual framework has been verified by involving a focus group. IEEE-Sustainable Energy Systems for Developing Communities (SESDC) was involved in the research verification process. The proposed conceptual framework was validated by incorporating a quantitative analysis to situate the research findings.  The research findings in the thesis contribute extensively to the body of knowledge by establishing a standard framework indicating the importance of energy-efficient approaches towards scaling up sustainable remote microgrids for solving energy crisis issues. As it were, the practical contribution of the thesis is critical in identifying and characterizing the dimensions of the Sustainable Developing Goal 7 for “affordable, reliable, sustainable and modern energy for all” and its impact on the other SDGs, thereby enabling progress towards the target 2030 of the United Nations.</p>


2021 ◽  
Vol 233 ◽  
pp. 111384
Author(s):  
Piotr Grygiel ◽  
Jan Tarłowski ◽  
Marta Prześniak-Welenc ◽  
Marcin Łapiński ◽  
Jacek Łubiński ◽  
...  

Author(s):  
Krung Luewattana ◽  
Paweena Rattanasena

<span lang="EN-US">Ground grid system is important for preventing the hazardous effects of overvoltage in high voltage substations due to fault current perhaps from lightning strike or device malfunction. Therefore, this study aimed to investigate the effects of overvoltage on square, rectangular and L-shaped ground grids with ground rods being distributed in mesh-pattern by using alternate transients program/electromagnetic transients program (ATP/EMTP) program. The models were simulated in the cases that 25 kA-fault current being injected into the center or one of the corners of ground grids. The results showed that the highest level of overvoltage (6.3349 kV) was detected at the corner of rectangular ground grid when the fault current was injected into its corner. However, the lowest level of overvoltage was found when the fault current was injected into the center of square ground grid. The results from this study indicated that ATP/EMTP program was useful for preliminary investigation of overvoltage on ground grids of different shapes. The obtained knowledge could be beneficial for further designing of ground grid systems of high voltage substations to receive the minimal damages due to fault current.</span>


Sign in / Sign up

Export Citation Format

Share Document