scholarly journals CPU-Based Real-Time Surface and Solid Voxelization for Incomplete Point Cloud

Author(s):  
Frederic Garcia ◽  
Bjorn Ottersten
Keyword(s):  
2021 ◽  
Vol 1910 (1) ◽  
pp. 012002
Author(s):  
Chao He ◽  
Jiayuan Gong ◽  
Yahui Yang ◽  
Dong Bi ◽  
Jianpin Lan ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 642
Author(s):  
Luis Miguel González de Santos ◽  
Ernesto Frías Nores ◽  
Joaquín Martínez Sánchez ◽  
Higinio González Jorge

Nowadays, unmanned aerial vehicles (UAVs) are extensively used for multiple purposes, such as infrastructure inspections or surveillance. This paper presents a real-time path planning algorithm in indoor environments designed to perform contact inspection tasks using UAVs. The only input used by this algorithm is the point cloud of the building where the UAV is going to navigate. The algorithm is divided into two main parts. The first one is the pre-processing algorithm that processes the point cloud, segmenting it into rooms and discretizing each room. The second part is the path planning algorithm that has to be executed in real time. In this way, all the computational load is in the first step, which is pre-processed, making the path calculation algorithm faster. The method has been tested in different buildings, measuring the execution time for different paths calculations. As can be seen in the results section, the developed algorithm is able to calculate a new path in 8–9 milliseconds. The developed algorithm fulfils the execution time restrictions, and it has proven to be reliable for route calculation.


Author(s):  
Zhiyong Gao ◽  
Jianhong Xiang

Background: While detecting the object directly from the 3D point cloud, the natural 3D patterns and invariance of 3D data are often obscure. Objective: In this work, we aimed at studying the 3D object detection from discrete, disordered and sparse 3D point clouds. Methods: The CNN is composed of the frustum sequence module, 3D instance segmentation module S-NET, 3D point cloud transformation module T-NET, and 3D boundary box estimation module E-NET. The search space of the object is determined by the frustum sequence module. The instance segmentation of the point cloud is performed by the 3D instance segmentation module. The 3D coordinates of the object are confirmed by the transformation module and the 3D bounding box estimation module. Results: Evaluated on KITTI benchmark dataset, our method outperforms the state of the art by remarkable margins while having real-time capability. Conclusion: We achieve real-time 3D object detection by proposing an improved convolutional neural network (CNN) based on image-driven point clouds.


Sign in / Sign up

Export Citation Format

Share Document