scholarly journals Fast Implementation of 4-bit Convolutional Neural Networks for Mobile Devices

Author(s):  
Anton Trusov ◽  
Elena Limonova ◽  
Dmitry Slugin ◽  
Dmitry Nikolaev ◽  
Vladimir V. Arlazarov
2018 ◽  
Vol 8 (4) ◽  
pp. 38 ◽  
Author(s):  
Arjun Pal Chowdhury ◽  
Pranav Kulkarni ◽  
Mahdi Nazm Bojnordi

Applications of neural networks have gained significant importance in embedded mobile devices and Internet of Things (IoT) nodes. In particular, convolutional neural networks have emerged as one of the most powerful techniques in computer vision, speech recognition, and AI applications that can improve the mobile user experience. However, satisfying all power and performance requirements of such low power devices is a significant challenge. Recent work has shown that binarizing a neural network can significantly improve the memory requirements of mobile devices at the cost of minor loss in accuracy. This paper proposes MB-CNN, a memristive accelerator for binary convolutional neural networks that perform XNOR convolution in-situ novel 2R memristive data blocks to improve power, performance, and memory requirements of embedded mobile devices. The proposed accelerator achieves at least 13.26 × , 5.91 × , and 3.18 × improvements in the system energy efficiency (computed by energy × delay) over the state-of-the-art software, GPU, and PIM architectures, respectively. The solution architecture which integrates CPU, GPU and MB-CNN outperforms every other configuration in terms of system energy and execution time.


Author(s):  
Denise Pechebovicz ◽  
Sthefanie Premebida ◽  
Vinicios Soares ◽  
Thiago Camargo ◽  
Jakson L. Bittencourt ◽  
...  

Author(s):  
Abayomi Otebolaku ◽  
Timibloudi Enamamu ◽  
Ali Alfouldi ◽  
Augustine Ikpehai ◽  
Jims Marchang

With the widespread of embedded sensing capabilities of mobile devices, there has been unprecedented development of context-aware solutions. This allows the proliferation of various intelligent applications such as those for remote health and lifestyle monitoring, intelligent personalized services, etc. However, activity context recognition based on multivariate time series signals obtained from mobile devices in unconstrained conditions is naturally prone to imbalance class problems. This means that recognition models tend to predict classes with the majority number of samples whilst ignoring classes with the least number of samples, resulting in poor generalization. To address this problem, we propose to augment the time series signals from inertia sensors with signals from ambient sensing to train deep convolutional neural networks (DCNN) models. DCNN provides the characteristics that capture local dependency and scale invariance of these combined sensor signals. Consequently, we developed a DCNN model using only inertial sensor signals and then developed another model that combined signals from both inertia and ambient sensors aiming to investigate the class imbalance problem by improving the performance of the recognition model. Evaluation and analysis of the proposed system using data with imbalanced classes show that the system achieved better recognition accuracy when data from inertial sensors are combined with those from ambient sensors such as environment noise level and illumination, with an overall improvement of 5.3% accuracy.


Sign in / Sign up

Export Citation Format

Share Document