ambient sensing
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 13)

H-INDEX

7
(FIVE YEARS 1)

Author(s):  
Wenzhong Shi

AbstractThis chapter overviews the urban sensing technologies for unban informatics to be introduced in the subsequent chapters under Part III of this book. To be covered is a wide range of technologies for urban sensing from the space, the air, the ground, the underground, and on individuals, including optical remote sensing, interferometric synthetic aperture radar, light detection and ranging, photogrammetry, underground sensing, mobile mapping, indoor positioning, ambient sensing, and the use of user-generated content.


Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 188
Author(s):  
Jana Huchtkoetter ◽  
Marcel Alwin Tepe ◽  
Andreas Reinhardt

Smart spaces are characterized by their ability to capture a holistic picture of their contextual situation. This often includes the detection of the operative states of electrical appliances, which in turn allows for the recognition of user activities and intentions. For electrical appliances with largely different power consumption characteristics, their types and operational times can be easily inferred from data collected at a single metering point (typically, a smart meter). However, a disambiguation between consumers of the same type and model, yet located in different areas of a smart building, is not possible this way. Likewise, small consumers (e.g., wall chargers) are often indiscernible from measurement noise and spurious power consumption events of other appliances. As a consequence thereof, we investigate how additional sensing modalities, i.e., data beyond electrical signals, can be leveraged to improve the appliance detection accuracy. Through a set of practical experiments, recording ambient influences in eight dimensions and testing their effects on 21 appliance types, we evaluate the importance of such added features in the context of appliance recognition. Our results show that electrical power measurements already yield a high appliance recognition accuracy, yet further accuracy improvements are possible when considering ambient parameters as well.


Author(s):  
E. Seyedkazemi Ardebili ◽  
S. Eken ◽  
K. Küçük

Abstract. After a brief look at the smart home, we conclude that to have a smart home, and it is necessary to have an intelligent management center. In this article, We have tried to make it possible for the smart home management center to be able to detect the presence of an abnormal state in the behavior of someone who lives in the house. In the proposed method, the daily algorithm examines the rate of changes of a person and provides a number which is henceforth called NNC (Number of normal changes) based on the person’s behavioral changes. We achieve the NNC number using a machine learning algorithm and performing a series of several simple statistical and mathematical calculations. NNC is a number that shows abnormal changes in residents’ behaviors in a smart home, i.e., this number is a small number for a regular person with constant planning and for a person who may not have any fixed principles and regular in personal life is a big number.To increase our accuracy in calculating NNC, we review all common machine learning algorithms and after tests we choose the decision tree because of its higher accuracy and speed and finally, NNC number is obtained by combining the Decision Tree algorithm with statistical and mathematical methods. In this method, we present a set of states and information obtained from the sensors along with the activities performed by the occupant of the house over a period of several days to the proposed algorithm. and the method ahead generates the main NNC number for those days for anyone living in a smart home. To generate this main NNC, we calculate each person’s daily NNC. That means we have daily NNCs for each person (based on his/her behaviors on that day) and the main NNC is the average of these daily NNC. We chose ARAS dataset (Human Activity Datasets in Multiple Homes with Multiple Residents) to implement our method and after tests and replications on the ARAS dataset, and to find anomalies in each person’s behavior in a day, we compare the main (average) NNC with that person’s daily NNC on that day. Finally, we can say, if the main NNC changes more than 30%, there is a possibility of an abnormality. and if the NNC changes more than 60% percent, we can say that an abnormal state or an uncommon event happened that day, and a declaration of an abnormal state will be issued to the resident of the house.


Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3803 ◽  
Author(s):  
Abayomi Otebolaku ◽  
Timibloudi Enamamu ◽  
Ali Alfoudi ◽  
Augustine Ikpehai ◽  
Jims Marchang ◽  
...  

With the widespread use of embedded sensing capabilities of mobile devices, there has been unprecedented development of context-aware solutions. This allows the proliferation of various intelligent applications, such as those for remote health and lifestyle monitoring, intelligent personalized services, etc. However, activity context recognition based on multivariate time series signals obtained from mobile devices in unconstrained conditions is naturally prone to imbalance class problems. This means that recognition models tend to predict classes with the majority number of samples whilst ignoring classes with the least number of samples, resulting in poor generalization. To address this problem, we propose augmentation of the time series signals from inertial sensors with signals from ambient sensing to train Deep Convolutional Neural Network (DCNNs) models. DCNNs provide the characteristics that capture local dependency and scale invariance of these combined sensor signals. Consequently, we developed a DCNN model using only inertial sensor signals and then developed another model that combined signals from both inertial and ambient sensors aiming to investigate the class imbalance problem by improving the performance of the recognition model. Evaluation and analysis of the proposed system using data with imbalanced classes show that the system achieved better recognition accuracy when data from inertial sensors are combined with those from ambient sensors, such as environmental noise level and illumination, with an overall improvement of 5.3% accuracy.


Author(s):  
Abayomi Otebolaku ◽  
Timibloudi Enamamu ◽  
Ali Alfouldi ◽  
Augustine Ikpehai ◽  
Jims Marchang

With the widespread of embedded sensing capabilities of mobile devices, there has been unprecedented development of context-aware solutions. This allows the proliferation of various intelligent applications such as those for remote health and lifestyle monitoring, intelligent personalized services, etc. However, activity context recognition based on multivariate time series signals obtained from mobile devices in unconstrained conditions is naturally prone to imbalance class problems. This means that recognition models tend to predict classes with the majority number of samples whilst ignoring classes with the least number of samples, resulting in poor generalization. To address this problem, we propose to augment the time series signals from inertia sensors with signals from ambient sensing to train deep convolutional neural networks (DCNN) models. DCNN provides the characteristics that capture local dependency and scale invariance of these combined sensor signals. Consequently, we developed a DCNN model using only inertial sensor signals and then developed another model that combined signals from both inertia and ambient sensors aiming to investigate the class imbalance problem by improving the performance of the recognition model. Evaluation and analysis of the proposed system using data with imbalanced classes show that the system achieved better recognition accuracy when data from inertial sensors are combined with those from ambient sensors such as environment noise level and illumination, with an overall improvement of 5.3% accuracy.


2020 ◽  
Vol 1 ◽  
Author(s):  
Andrew Sonta ◽  
Rishee K. Jain

Abstract We develop a model that successfully learns social and organizational human network structure using ambient sensing data from distributed plug load energy sensors in commercial buildings. A key goal for the design and operation of commercial buildings is to support the success of organizations within them. In modern workspaces, a particularly important goal is collaboration, which relies on physical interactions among individuals. Learning the true socio-organizational relational ties among workers can therefore help managers of buildings and organizations make decisions that improve collaboration. In this paper, we introduce the Interaction Model, a method for inferring human network structure that leverages data from distributed plug load energy sensors. In a case study, we benchmark our method against network data obtained through a survey and compare its performance to other data-driven tools. We find that unlike previous methods, our method infers a network that is correlated with the survey network to a statistically significant degree (graph correlation of 0.46, significant at the 0.01 confidence level). We additionally find that our method requires only 10 weeks of sensing data, enabling dynamic network measurement. Learning human network structure through data-driven means can enable the design and operation of spaces that encourage, rather than inhibit, the success of organizations.


Sign in / Sign up

Export Citation Format

Share Document