A control strategy of single phase voltage source PWM rectifier under rotating coordinate

Author(s):  
Xing Wan ◽  
Jie Ren ◽  
Tian Wan ◽  
Shi Jing ◽  
Sinian Xiong ◽  
...  
2020 ◽  
Vol 102 (4) ◽  
pp. 2509-2519
Author(s):  
José Carlos Ugaz Peña ◽  
Leonardo Poltronieri Sampaio ◽  
Moacyr Aureliano Gomes de Brito ◽  
Carlos Alberto Canesin

2013 ◽  
Vol 336-338 ◽  
pp. 450-453
Author(s):  
Jian Ying Li ◽  
Wei Dong Yang ◽  
Ni Na Ma

In view of the fact that active power and reactive power have coupling relation, a novel vector decoupling control strategy is presented for three-phase voltage source PWM rectifier. In the paper, the power control mathematical mode of the PWM rectifier is deduced based on the mathematical model of rectifier in synchronous d-q rotating coordinates, and a new voltage feed forward decoupling compensation control strategy is proposed. The simulation results show that the voltage and current of the three-phase PWM rectifier have better respond preference, the current aberrance is smaller and the voltage is steady under the control strategy. The PWM rectifier can implement PWM commute with unity power factor, but also feed back the energy to AC side with unity power factor.


2014 ◽  
Vol 65 (2) ◽  
pp. 121-124 ◽  
Author(s):  
Vojtĕch Blahník ◽  
Zdenĕk Peroutka ◽  
Jakub Talla

Abstract This paper introduces the advanced control of single-phase voltage-source active rectifier. This control provide direct control of trolley-wire current and active damping of low-frequency disturbances at the converter ac side. Our proposed control strategy combines PR controller with feed-forward model and low-frequency harmonic compensator based on resonant controllers. Achieved experimental results show excellent converter behavior, where converter is fed by strongly distorted supply voltage.


Sign in / Sign up

Export Citation Format

Share Document