Scenario-based Model Predictive Control for Path Planning and Obstacle Avoidance

Author(s):  
Xinxin Shang ◽  
Jicheng Chen ◽  
Songlin Zhuang ◽  
Yang Shi
2020 ◽  
Vol 53 (3-4) ◽  
pp. 501-518
Author(s):  
Chaofang Hu ◽  
Lingxue Zhao ◽  
Lei Cao ◽  
Patrick Tjan ◽  
Na Wang

In this paper, a strategy based on model predictive control consisting of path planning and path tracking is designed for obstacle avoidance steering control problem of the unmanned ground vehicle. The path planning controller can reconfigure a new obstacle avoidance reference path, where the constraint of the front-wheel-steering angle is transformed to formulate lateral acceleration constraint. The path tracking controller is designed to realize the accurate and fast following of the reconfigured path, and the control variable of tracking controller is steering angle. In this work, obstacles are divided into two categories: static and dynamic. When the decision-making system of the unmanned ground vehicle determines the existence of static obstacles, the obstacle avoidance path will be generated online by an optimal path reconfiguration based on direct collocation method. In the case of dynamic obstacles, receding horizon control is used for real-time path optimization. To decrease online computation burden and realize fast path tracking, the tracking controller is developed using the continuous-time model predictive control algorithm, where the extended state observer is combined to estimate the lumped disturbances for strengthening the robustness of the controller. Finally, simulations show the effectiveness of the proposed approach in comparison with nonlinear model predictive control, and the CarSim simulation is presented to further prove the feasibility of the proposed method.


Author(s):  
Zhaoxi Xie ◽  
Yanfeng Wu ◽  
Jianping Gao ◽  
Chuanjie Song ◽  
Wenjian Chai ◽  
...  

Author(s):  
N.P. Demenkov ◽  
Kai Zou

The paper discusses the problem of obstacle avoidance of a self-driving car in urban road conditions. The artificial potential field method is used to simulate traffic lanes and cars in a road environment. The characteristics of the urban environment, as well as the features and disadvantages of existing methods based on the structure of planning-tracking, are analyzed. A method of local path planning is developed, based on the idea of an artificial potential field and model predictive control in order to unify the process of path planning and tracking to effectively cope with the dynamic urban environment. The potential field functions are introduced into the path planning task as constraints. Based on model predictive control, a path planning controller is developed, combined with the physical constraints of the vehicle, to avoid obstacles and execute the expected commands from the top level as the target for the task. A joint simulation was performed using MATLAB and CarSim programs to test the feasibility of the proposed path planning method. The results show the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document