scholarly journals Path planning with multiple constraints and path following based on model predictive control for robotic fish

Author(s):  
Yizhuo Mu ◽  
Jingfen Qiao ◽  
Jincun Liu ◽  
Dong An ◽  
Yaoguang Wei
Author(s):  
Maria L. Castaño ◽  
Xiaobo Tan

There has been an increasing interest in the use of autonomous underwater robots to monitor freshwater and marine environments. In particular, robots that propel and maneuver themselves like fish, often known as robotic fish, have emerged as mobile sensing platforms for aquatic environments. Highly nonlinear and often under-actuated dynamics of robotic fish present significant challenges in control of these robots. In this work, we propose a nonlinear model predictive control (NMPC) approach to path-following of a tail-actuated robotic fish that accommodates the nonlinear dynamics and actuation constraints while minimizing the control effort. Considering the cyclic nature of tail actuation, the control design is based on an averaged dynamic model, where the hydrodynamic force generated by tail beating is captured using Lighthill's large-amplitude elongated-body theory. A computationally efficient approach is developed to identify the model parameters based on the measured swimming and turning data for the robot. With the tail beat frequency fixed, the bias and amplitude of the tail oscillation are treated as physical variables to be manipulated, which are related to the control inputs via a nonlinear map. A control projection method is introduced to accommodate the sector-shaped constraints of the control inputs while minimizing the optimization complexity in solving the NMPC problem. Both simulation and experimental results support the efficacy of the proposed approach. In particular, the advantages of the control projection method are shown via comparison with alternative approaches.


Author(s):  
Maria L. Castaño ◽  
Xiaobo Tan

The increase of potential threats to the integrity of our aquatic ecosystems has caused global concerns which have led to interest in the use autonomous aquatic robots to monitor such environments. In recent years, underwater robots that propel and maneuver themselves like real fish, often called robotic fish, have emerged as mobile sensing platforms for freshwater and marine environments. These robots achieve locomotion via actively controlled fins, and actuation is often achieved via oscillatory inputs. Given these types of applications, accuracy and energy-saving in trajectory control is of importance for mission successes. In this work, we propose a nonlinear model predictive control (NMPC) approach to path following of a tail-actuated robotic fish. In this design, we use bias and amplitude of the tail-beat as the input to be determined by the NMPC. The effectiveness of the proposed approach is demonstrated via simulation.


Author(s):  
Wuwei Chen ◽  
Mingyue Yan ◽  
Qidong Wang ◽  
Kai Xu

This paper proposes a novel dynamic path planning and path following control method for collision avoidance, which works based on an improved piecewise affine tire model. The main contribution of this work is the design of a dynamic path planning method based on model predictive control, where it replans a maneuverable path to avoid moving obstacle in real time. A hierarchical control framework contains a high-level path replanning model predictive control and a low-level path following model predictive control. A collision avoidance cost function in the high hierarchies was designed to calculate the relative dynamic distance, which copes with the sudden obstacle. Moreover, the replanning path is the optimized output according to reference trajectory, obstacle, and handling stability. The control objective of the low hierarchies is to accurately track the replanning path, especially for the increased nonlinearity of large tire sideslip angle. For this reason, an improved piecewise affine tire model is designed and used for model predictive control to improve the path following performance and reduce calculated burden. The main improvement of the piecewise affine tire model is that the varied lateral stiffness coefficients adapt to the change of the tire sideslip angle in different tire regions. Based on the CarSim and Simulink platform, the dynamic path planning and path following simulations are designed to test the proposed method. The simulation results demonstrate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document