Integrated Path Planning and Tracking Control of Autonomous Vehicle for Collision Avoidance based on Model Predictive Control and Potential Field

Author(s):  
Chanho. Ko ◽  
Seungho. Han ◽  
Minseong. Choi ◽  
Kyung-Soo. Kim
Author(s):  
Umar Zakir Abdul Hamid ◽  
Hairi Zamzuri ◽  
Tsuyoshi Yamada ◽  
Mohd Azizi Abdul Rahman ◽  
Yuichi Saito ◽  
...  

The collision avoidance (CA) system is a pivotal part of the autonomous vehicle. Ability to navigate the vehicle in various hazardous scenarios demands reliable actuator interventions. In a complex CA scenario, the increased nonlinearity requires a dependable control strategy. For example, during collisions with a sudden appearing obstacle (i.e. crossing pedestrian, vehicle), the abrupt increment of vehicle longitudinal and lateral forces summation during the CA maneuver demands a system with the ability to handle coupled nonlinear dynamics. Failure to address the aforementioned issues will result in collisions and near-miss incidents. Thus, to solve these issues, a nonlinear model predictive control (NMPC)-based path tracking strategy is proposed as the automated motion guidance for the host vehicle CA architecture. The system is integrated with the artificial potential field (APF) as the motion planning strategy. In a hazardous scenario, APF measures the collision risks and formulates the desired yaw rate and deceleration metrics for the path replanning. APF ensures an optimal replanned trajectory by including the vehicle dynamics into its optimization formulation. NMPC then acts as the coupled path and speed tracking controller to enable vehicle navigation. To accommodate vehicle comfort during the avoidance, NMPC is constrained. Due to its complexity as a nonlinear controller, NMPC can be time-consuming. Therefore, a move blocking strategy is assimilated within the architecture to decrease the system’s computational burden. The modular nature of the architecture allows each strategy to be tuned and developed independently without affecting each others’ performance. The system’s tracking performance is analyzed by computational simulations with several CA scenarios (crossing pedestrian, parked bus, and sudden appearing moving vehicle at an intersection). NMPC tracking performance is compared to the nominal MPC and linear controllers. The effect of move blocking strategies on NMPC performance are analyzed, and the results are compared in terms of mean squared error values. The inclusion of nonlinear tracking controllers in the architecture is shown to provide reliable CA actions in various hazardous scenarios. The work is important for the development of a reliable controller strategy for multi-scenario CA of the fully autonomous vehicle.


Author(s):  
N.P. Demenkov ◽  
Kai Zou

The paper discusses the problem of obstacle avoidance of a self-driving car in urban road conditions. The artificial potential field method is used to simulate traffic lanes and cars in a road environment. The characteristics of the urban environment, as well as the features and disadvantages of existing methods based on the structure of planning-tracking, are analyzed. A method of local path planning is developed, based on the idea of an artificial potential field and model predictive control in order to unify the process of path planning and tracking to effectively cope with the dynamic urban environment. The potential field functions are introduced into the path planning task as constraints. Based on model predictive control, a path planning controller is developed, combined with the physical constraints of the vehicle, to avoid obstacles and execute the expected commands from the top level as the target for the task. A joint simulation was performed using MATLAB and CarSim programs to test the feasibility of the proposed path planning method. The results show the effectiveness of the proposed method.


Author(s):  
Keji Chen ◽  
Xiaofei Pei ◽  
Daoyuan Sun ◽  
Zhenfu Chen ◽  
Xuexun Guo ◽  
...  

Leveraging the advancements in sensor and mapping technologies, the collision-free autonomous vehicle becomes possible in the future. In this article, a case study of collision avoidance by active steering control is presented and verified by a driver-in-the-loop platform. The proposed control system integrates a risk assessment algorithm and a hierarchical model predictive control approach to ensure a safe driving. First, a fuzzy logic is used to estimate the potential conflict. Besides, a nonlinear model predictive control is introduced in the upper layer of the model predictive controller to generate a collision-free trajectory. Furthermore, the lower layer determines the optimal steering angle based on the linear time-variant model predictive control to follow the replanning path. The performance of the controller has been evaluated in the real-time driver-in-the-loop test. The results show that the autonomous vehicle is able to avoid the collision with the surrounding vehicle that is operated by a real driver, and the performance of collision avoidance is improved by means of the risk assessment.


Sign in / Sign up

Export Citation Format

Share Document