Using Mobile Hydrogen Trucks to Transport Energy to Microgrids

Author(s):  
Bei Li ◽  
Jiangchen Li
Keyword(s):  
2001 ◽  
Vol 664 ◽  
Author(s):  
Brent P. Nelsona ◽  
Yueqin Xu ◽  
Robert C. Reedy ◽  
Richard S. Crandall ◽  
A. Harv Mahan ◽  
...  

ABSTRACTWe find that hydrogen diffuses as H+, H0, or H- in hydrogenated amorphous silicon depending on its location within the i-layer of a p-i-n device. We annealed a set of five p-i-n devices, each with a thin deuterium-doped layer at a different location in the i-layer, and observed the D-diffusion using secondary ionmass spectrometry (SIMS). When H-diffuses in a charged state, electric fields in the device strongly influence the direction and distance of diffusion. When D is incorporated into a device near the p-layer, almost all of the D-diffusion occurs as D+, and when the D is incorporated near the n-layer, most of the D-diffusion occurs as D-. We correlate the preferential direction of D-motion at given depth within the i-layer, with the local Fermi level (as calculated by solar cell simulations), to empirically determine an effective correlation energy for mobile-H electronic transitions of 0.39 ± 0.1 eV. Using this procedure, the best fit to the data produces a disorder broadening of the transition levels of ∼0.25 eV. The midpoint between the H0/+ and the H0/- transition levels is ∼0.20 ± 0.05 eV above midgap.


2014 ◽  
Vol 39 (35) ◽  
pp. 20411-20419 ◽  
Author(s):  
Ke Sun ◽  
Xiangmin Pan ◽  
Zhiyong Li ◽  
Jianxin Ma

1996 ◽  
Vol 60 (21) ◽  
pp. 4075-4094 ◽  
Author(s):  
Andreas K. Kronenberg ◽  
Richard A. Yund ◽  
George R. Rossman

1977 ◽  
Vol 55 (18) ◽  
pp. 3211-3217 ◽  
Author(s):  
Rachel Massuda ◽  
C. Sandorfy

It has been shown previously that halofluorocarbons having anesthetic potency hinder the formation of hydrogen bonds (HB) of the [Formula: see text] types and it has been suggested that this is linked to a competitive mechanism involving another type of association. Since some of the most potent and widely used fluorocarbon anesthetics contain a mobile hydrogen atom the question arises if in such molecules the competitive mechanism involves the formation of HB's with the anesthetic as the proton donor instead of, or in addition to, association due to the electron acceptor properties of the higher halogens as seems to be the case for those fluorocarbon anesthetics which contain no hydrogen. Chloroform, halothane, methoxyflurane, enflurane, and 4,5-dichloro-2,2-difluoro-l,3-dioxolane have been studied from this point of view with the result that both mechanisms appear to operate.


Sign in / Sign up

Export Citation Format

Share Document