potassium feldspar
Recently Published Documents


TOTAL DOCUMENTS

237
(FIVE YEARS 62)

H-INDEX

26
(FIVE YEARS 1)

2022 ◽  
Vol 12 (2) ◽  
pp. 613
Author(s):  
Alexey N. Beskopylny ◽  
Evgenii M. Shcherban’ ◽  
Sergey A. Stel’makh ◽  
Levon R. Mailyan ◽  
Besarion Meskhi ◽  
...  

Currently, considering global trends and challenges, as well as the UN sustainable development goals and the ESG plan, the development of geopolymer binders for the production of geopolymer concrete has become an urgent area of construction science. This study aimed to reveal the influence of the component composition and recipe dosage on the characteristics of fine-grained geopolymer concrete with the use of stone flour. Eleven compositions of geopolymer fine-grained concrete were made from which samples of the mixture were obtained for testing at the beginning and end of setting and models in the form of beams and cubes for testing the compressive strength tensile strength in bending. It was found that the considered types of stone flour can be successfully used as an additive in the manufacture of geopolymer concrete. An analysis of the setting time measurements showed that stone flour could accelerate the hardening of the geopolymer composite. It was found that the addition of stone waste significantly improves the compressive strength of geopolymers in comparison with a geopolymer composite containing only quartz sand. The maximum compressive strength of 52.2 MPa and the tensile strength in bending of 6.7 MPa provide the introduction of potassium feldspar in an amount of 15% of the binder mass. Microstructural analysis of the geopolymer composite was carried out, confirming the effectiveness of the recipe techniques implemented in this study.


2021 ◽  
Vol 943 (1) ◽  
pp. 012018
Author(s):  
Hongjun Huang ◽  
Junjie Yu ◽  
Fangfang Liu ◽  
Haipeng Zeng

Abstract In this study, a lead-free transparent frit glaze was fabricated using a high potassium feldspar ore from Northeast China. The effect of the potassium feldspar grade and compositions of CaO and ZnO content on the performance of a block glaze was studied. The study on the effects of the potassium feldspar grade on the molten glaze demonstrated that as the grade of the potassium feldspar in glaze increases, the glaze appearance, gloss, hardness, and thermal stability of the sample become better, and the roughness decreases. CaO and ZnO in glaze have good fusible effects on the performance of melt glaze: the high-temperature viscosity of glaze decreases, and the surface tension and quality of the glaze increase. Moreover, an optimal lead-free frit glaze formula was determined, which provided insight into the production of high-added-value products using complex and refractory potassium feldspar ore.


Author(s):  
Paul R. Craddock ◽  
◽  
Prakhar Srivastava ◽  
Harish Datir ◽  
David Rose ◽  
...  

This paper describes an innovative machine-learning application, based on variational autoencoder frameworks, to quantify the concentrations and associated uncertainties of common minerals in sedimentary formations using the measurement of atomic element concentrations from geochemical spectroscopy logs as inputs. The algorithm comprises an input(s), encoder, decoder, output(s), and a novel cost function to optimize the model coefficients during training. The input to the algorithm is a set of dry-weight concentrations of atomic elements with their associated uncertainty. The first output is a set of dry-weight fractions of 14 minerals, and the second output is a set of reconstructed dry-weight concentrations of the original elements. Both sets of outputs include estimates of uncertainty on their predictions. The encoder and decoder are multilayer feed-forward artificial neural networks (ANN), with their coefficients (weights) optimized during calibration (training). The cost function simultaneously minimizes error (accuracy metric) and variance (precision or robustness metric) on the mineral and reconstructed elemental outputs. Training of the weights is done using a set of several-thousand core samples with independent, high-fidelity elemental and mineral (quartz, potassium-feldspar, plagioclase-feldspar, illite, smectite, kaolinite, chlorite, mica, calcite, dolomite, ankerite, siderite, pyrite, and anhydrite) data. The algorithm provides notable advantages over existing methods to estimate formation lithology or mineralogy relying on simple linear, empirical, or nearest-neighbor functions. The ANN numerically capture the multidimensional and nonlinear geochemical relationship (mapping) between elements and minerals that is insufficiently described by prior methods. Training is iterative via backpropagation and samples from Gaussian distributions on each of the elemental inputs, rather than single values, for every sample at each iteration (epoch). These Gaussian distributions are chosen to specifically represent the unique statistical uncertainty of the dry-weight elements in the logging measurements. Sampling from Gaussian distributions during training reduces the potential for overfitting, provides robustness for log interpretations, and further enables a calibrated estimate of uncertainty on the mineral and reconstructed elemental outputs, all of which are lacking in prior methods. The framework of the algorithm is purposefully generalizable so that it can be adapted across geochemical spectroscopy tools. The algorithm reasonably approximates a “global-average” model that requires neither different calibrations nor expert parameterization or intervention for interpreting common oilfield sedimentary formations, although the framework is again purposefully generalizable so it can be optimized for local environments where desirable. The paper showcases a field application of the method for estimating mineral type and abundance in oilfield formations from wellbore-logging measurements.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7321
Author(s):  
Agata Stempkowska

The aim of the research was to check whether the system of three fluxes based on lithium aluminium silicate and alkali feldspars has a eutectic point, i.e., with the lowest melting temperature. Lithium was introduced into the mixtures in the form of petalite, which occurs naturally in nature (Bikita Zimbabwe deposit). Using naturally occurring raw materials such as petalite, sodium feldspar, and potassium feldspar, an attempt was made to obtain eutectics with the lowest melting point to facilitate thermal processing of the mineral materials. In addition, the high-temperature viscosity of the mineral alloys and physical parameters such as density, linear shrinkage, and open porosity were studied. The study showed that in these systems, there is one three-component eutectic at 1345 °C, with the lowest viscosity of 1·105 Pas and the highest density of 2.34g/cm3, with a weight content of petalite 20%, sodium feldspar 20%, and potassium feldspar 20%.


Geology ◽  
2021 ◽  
Author(s):  
Olivia G. Thurston ◽  
William R. Guenthner ◽  
Karl E. Karlstrom ◽  
Jason W. Ricketts ◽  
Matthew T. Heizler ◽  
...  

Our study used zircon (U-Th)/He (ZHe) thermochronology to resolve cooling events of Precambrian basement below the Great Unconformity surface in the eastern Grand Canyon, United States. We combined new ZHe data with previous thermochronometric results to model the <250 °C thermal history of Precambrian basement over the past >1 Ga. Inverse models of ZHe date-effective uranium (eU) concentration, a relative measure of radiation damage that influences closure temperature, utilize He diffusion and damage annealing and suggest that the main phase of Precambrian cooling to <200 °C was between 1300 and 1250 Ma. This result agrees with mica and potassium feldspar 40Ar/39Ar thermochronology showing rapid post–1400 Ma cooling, and both are consistent with the 1255 Ma depositional age for the Unkar Group. At the young end of the timescale, our data and models are also highly sensitive to late-stage reheating due to burial beneath ~3–4 km of Phanerozoic strata prior to ca. 60 Ma; models that best match observed date-eU trends show maximum temperatures of 140–160 °C, in agreement with apatite (U-Th)/He and fission-track data. Inverse models also support multi-stage Cenozoic cooling, with post–20 Ma cooling from ~80 to 20 °C reflecting partial carving of the eastern Grand Canyon, and late rapid cooling indicated by 3–7 Ma ZHe dates over a wide range of high eU. Our ZHe data resolve major basement exhumation below the Great Unconformity during the Mesoproterozoic (1300–1250 Ma), and “young” (20–0 Ma) carving of Grand Canyon, but show little sensitivity to Neoproterozoic and Cambrian basement unroofing components of the composite Great Unconformity.


2021 ◽  
Vol 906 (1) ◽  
pp. 012116
Author(s):  
Anatolii Zhuravlev ◽  
Zinaida Nikiforova ◽  
Aleksey Ivanov ◽  
Michil Ivanov

Abstract Evota gold-bearing region is located in south of Republic Sakha (Yakutia) within the Nimnyr terrane of Aldan shield. A large numbers of gold-bearing placers are known on studied territory, but the primary sources for them have not been established. In this work, based on the study of the mineralogical and geochemical features of gold from alluvial deposits of the Evota gold-bearing region, possible genetic types of primary sources are considered. Obtained data showed that native gold in the studied objects has a very high, high and medium fineness. The roundness of gold is different. Almost ore crystals with sharp edges and well-rounded individuals with polished faces were found. The fineness of the studied gold grains was determined by microprobe analyzer Cameca Camebax-micro and varies in the range from 812 to 1000 %⁰. A thin (up to 20 μm) high-grade rim was found in two grains (cr. Zolotoy). The central part of one of them has a fineness of 865 %o, and in the edge part it reaches 1000 %⁰, which indicates that this gold was in the hypergenesis zone. Admixture elements determined as traces and are presented Cu, Pd, Fe, Ni. Minerals-microinclusions - quartz, potassium feldspar, pyroxene, staurolite, maldonite, bismuthite revealed in gold grains. In some watercourses, for example, in the creek Sukhoi, only very high fineness gold (993-1000 %⁰) was found. The presence of high-grade gold (cr. Sukhoi), intergrowths of gold with bismuthite (cr. Zolotoy), as well as inclusions of maldonite (cr. Yagodny) gives opportunity for assuming that primary sources could be basic ores such presented in the P. Pinigin deposit. At the sites (cr. Elovyi, r. Evota), both medium-grade and very high-grade gold were found, the fineness range varied from 827 to 998 %⁰. The presence of gold with medium fineness and good roundness in studied watercourses probably indicates an additional supply of gold from primary sources formed as a result of the alkaline magmatism development of the Mesozoic age. Thus, for gold with high and very high fineness by admixture-elements, chemical composition and microinclusions, a genetic relationship with primary sources similar to the P. Pinigin deposit was found; for gold grains with medium fineness, formation in gold-ore mineralization characterized for the Mesozoic stage ore development such in deposits of Central-Aldan ore region is assumed.


2021 ◽  
Vol 906 (1) ◽  
pp. 012081
Author(s):  
Boris Gerasimov

Abstract The article examines the results of exploratory work carried out in the southern part of the Lena-Anabar trough in the north-eastern part of the Siberian platform. Alluvial deposits of the Polovinnaya river, which belongs to the Uele-Udzhinsky placer cluster, were sampled for predictive assessment of commercial prospects for placer occurrences of gold. The mineralogical-geochemical features of the placer gold were studied in order to identify potential primary sources. It is proved that the Mesozoic and Cenozoic deposits are the main sources of gold. Its typomorphic features are small size (-0.5 mm), toroidal and flake shape, shagreen surface with casts of pressing of the minerals, and high fineness (950-999 %). The internal structures of gold particles are represented by thick high-grade shells, translation lines and high-grade intergranular veinlets. Along with this, the discovery of the autochtonous gold of ore habit in the studied gold area suggested the presence of an additional primary source. Very small size (-0.2 mm) and angular-lumpy shapes of the individuals, almost unrounded surface and low fineness are typical features of slightly altered gold. The discovery of small (3-4mm) fragments of hydrothermal-metasomatic rocks in the alluvium of the Polovinnaya river confirms the above assumption. The epigenetic mineral composition of these fragments is represented by pyrite, potassium feldspar, fluorapatite, and quartz. Micro-X-ray spectral analysis determined the smallest (first microns) mineral phases of native gold, argentite, galena, sphalerite and greenockite in them. It is worth noting that the described fragments are quite fragile, and they are destroyed with a slight impact with a steel needle. The fragility of these fragments indicates the close proximity of the rewashed ore occurrences. In addition, increased gold content in small classes of heavy concentrate material of small-volume samples was determined according to atomic absorption analysis. All this together is a prerequisite for the discovery of ore occurrences with finely-dispersed and fine gold. It is assumed that the ore occurrences can be localized in the Anabar-Eekit fault zone, which extends parallel to the Pronchishchev ridge, through the Anabar-Olenek trough, to the Sololiy uplift of the Olenek arch. In the area of the Olenek arch, this zone is associated with superimposed gold-bearing low-temperature hydrothermal mineralization, expressed by K-feldspathization and sulfidization of the Permian deposits.


2021 ◽  
Vol 906 (1) ◽  
pp. 012007
Author(s):  
Aleksey Kostin

Abstract This research continues our investigations of the iron-oxide copper-gold deposits in the Western Verkhoyansk region, where recent years efforts of the IGABM SB RAS led to the discovery of a new gold Kiskuel deposit. The Kis-Kuel intrusion-related IOCG deposit in Eastern Yakutia (Russia) with a wide range of mineral styles has a direct genetic link with a cooling intrusion during its formation. The IOCG worldwide and the Kis-Kuel deposit have common features for this style - the abundance of iron oxides and low of sulfides. Magmatic contribution to the Kis-Kuel deposit is significant. Intrusive rocks range from diorite to granodiorite in composition. The Kiskuel deposit hosted in diorites and granodiorites; xenoliths confirming deep mineralization represented by pyrrhotite (main), pyrite, chalcopyrite, and clinosafflorite (Co, Fe, Ni)As2, chromite, pentlandite. Clinosafflorite localized at the contact of pyrrhotite and chalcopyrite and at the contact of pyrrhotite and biotite. Chalcopyrite is found in intergrowth with pyrrhotite, were it forms bands and lenses. Parallel to the biotite cleavage, the thinnest layers of chalcopyrite are common. Clinosafflorite is rare and discovered in hydrothermal cobalt-nickel ores of the Bou-Azzer (Morocco), Cobalt (Canada), Glassberg (Germany), Silver Mine (England) and several others. Mineralization of rich mica processes occur in connection with the chromite, pentlandite, chalcopyrite, pyrite, and pyrrhotite; a common feature of the mineralized dark-colored rock is phlogopite abundance, ilmenite, potassium feldspar, calcite, rarely quartz; clinoenstatite metasomaticaly replaced with phlogopite and dolomite. This new evidence supports a magmatic-hydrothermal model for the formation of IOCG deposit in the Kis-Kuel, where iron-oxide mineralization sourced from intermediate magmas. The deep complex predominantly composed of chromite, ilmenite, magnetite, pentlandite, and clinocafflorite; less of galena and sphalerite. Many diverse mineraization systems from Kis-Kuel classified together as iron oxide copper-gold (IOCG) deposits. The obtained data suggest deep ore-bearing structure of the Kis-Kuel ore-magmatic cluster with the potential for discovering of a new mineral ores style. All of this help in developing a new robust prospecting model.


2021 ◽  
pp. 221-250
Author(s):  
Mohammad Latifi ◽  
Mohammad Khodabandehloo ◽  
Jamal Chaouki
Keyword(s):  

Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 966
Author(s):  
Rita Kallio ◽  
Pekka Tanskanen ◽  
Saija Luukkanen

Scandium is classified as a critical raw material by the European Union. Its beneficiation from various primary and secondary sources is currently being studied under several research and development projects. Due to the geochemical characteristics of Sc, its enrichment to ore grades by geological processes is scarce. Potential new sources are investigated to respond to the expected increasing demand for this rare earth metal. The recently discovered Kiviniemi Sc deposit in Finland represents an igneous occurrence with estimated total resources of 13.4 Mt and an average Sc grade of 163 g/t. The deposit consists of relatively homogeneous ferrodioritic intrusive body with its main unit with ~2.5 ha surface extension. Scandium is mainly incorporated into the lattice of clinopyroxene and amphibole within the main unit. Composite samples from three drill cores from various parts of the main unit were concentrated with a combination of low-intensity and high-gradient magnetic separation. Depending on the feed characteristics, high-gradient magnetic separation reached recoveries between 87% and 92% with 230–310 ppm Sc while removing 35–49 mass percent of gangue minerals, mainly plagioclase and potassium feldspar. Our study provides information on the magnetic preconcentration conditions with process mineralogical details and produced concentrates for further testing according to the suggested processing scheme.


Sign in / Sign up

Export Citation Format

Share Document