competitive mechanism
Recently Published Documents


TOTAL DOCUMENTS

147
(FIVE YEARS 57)

H-INDEX

22
(FIVE YEARS 5)

2021 ◽  
Vol 152 (6) ◽  
pp. 118-125
Author(s):  
Olga S. Bliznyuk ◽  

In the context of a rapidly changing economic reality, the management of large industrial complexes at the macro level has been become increasingly complex and difficult to predict. Directly, the ability to find, create, and combine new and existing conceptual foundations of management policy that have not been used before, but take into account the trends and features of certain socio-economic systems provides an opportunity to develop and create a flexible, adaptive management competitive mechanism that allows, depending on the circumstances, both to re-develop the system from the inside and adjust it to the existing conditions of the macro-environment. Thus, management becomes the main strategic resource that ensures the competitive advantage of the socio-economic system, as well as its’ “survival”, adaptation, transformation and development. The machine-building complex of the Republic of Belarus is an example of a multidimensional volumetric socio-economic system that requires large management costs to increase and strengthen its competitive capabilities and potential. This article is devoted directly to the development of methodological tools for managing the competitiveness of the machine-building complex of the Republic of Belarus, taking into account the features and conditions of its functioning.


EvoDevo ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shane Nourizadeh ◽  
Susannah Kassmer ◽  
Delany Rodriguez ◽  
Laurel S. Hiebert ◽  
Anthony W. De Tomaso

Abstract Background Botryllid ascidians are a group of marine invertebrate chordates that are colonial and grow by repeated rounds of asexual reproduction to form a colony of individual bodies, called zooids, linked by a common vascular network. Two distinct processes are responsible for zooid regeneration. In the first, called blastogenesis, new zooids arise from a region of multipotent epithelium from a pre-existing zooid. In the second, called whole body regeneration (WBR), mobile cells in the vasculature coalesce and are the source of the new zooid. In some botryllid species, blastogenesis and WBR occur concurrently, while in others, blastogenesis is used exclusively for growth, while WBR only occurs following injury or exiting periods of dormancy. In species such as Botrylloides diegensis, injury induced WBR is triggered by the surgical isolation of a small piece of vasculature. However, Botryllus schlosseri has unique requirements that must be met for successful injury induced WBR. Our goal was to understand why there would be different requirements between these two species. Results While WBR in B. diegensis was robust, we found that in B. schlosseri, new zooid growth following injury is unlikely due to circulatory cells, but instead a result of ectopic development of tissues leftover from the blastogenic process. These tissues could be whole, damaged, or partially resorbed developing zooids, and we defined the minimal amount of vascular biomass to support ectopic regeneration. We did find a common theme between the two species: a competitive process exists which results in only a single zooid reaching maturity following injury. We utilized this phenomenon and found that competition is reversible and mediated by circulating factors and/or cells. Conclusions We propose that WBR does not occur in B. schlosseri and that the unique requirements defined in other studies only serve to increase the chances of ectopic development. This is likely a response to injury as we have discovered a vascular-based reversible competitive mechanism which ensures that only a single zooid completes development. This competition has been described in other species, but the unique response of B. schlosseri to injury provides a new model to study resource allocation and competition within an individual.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Jin Chen ◽  
Jian Chen ◽  
Xin Li ◽  
Jiale He ◽  
Liao Yang ◽  
...  

AbstractHgCdTe avalanche photodiodes promise various fascinating applications due to the outstanding capability of detecting weak signals or even single photon. However, the underlying transport mechanisms of diverse dark current components are still unresolved at high reverse bias, thus limiting the development of high-performance devices. Here, we establish an accurate model to demonstrate the competitive mechanism between band-to-band and avalanche dark currents in positive-intrinsic-negative structures. Based on the high consistency between the simulated and measured results, we find that both components jointly dominate overall dark current but with a larger avalanche current. This breaks the conventional cognition that band-to-band dark current contributes the majority. With the guidance, we reconstruct an optimized device and achieve gain 1876 (6153) and dark current 10−10 (10−9) A at bias −10 (−10.5) V, respectively. Comparisons of dark current and gain with reported single-element devices further confirm the outstanding performance of our device.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6668
Author(s):  
Inga R. Grin ◽  
Grigory V. Mechetin ◽  
Rustem D. Kasymov ◽  
Evgeniia A. Diatlova ◽  
Anna V. Yudkina ◽  
...  

Uracil–DNA glycosylases are enzymes that excise uracil bases appearing in DNA as a result of cytosine deamination or accidental dUMP incorporation from the dUTP pool. The activity of Family 1 uracil–DNA glycosylase (UNG) activity limits the efficiency of antimetabolite drugs and is essential for virulence in some bacterial and viral infections. Thus, UNG is regarded as a promising target for antitumor, antiviral, antibacterial, and antiprotozoal drugs. Most UNG inhibitors presently developed are based on the uracil base linked to various substituents, yet new pharmacophores are wanted to target a wide range of UNGs. We have conducted virtual screening of a 1,027,767-ligand library and biochemically screened the best hits for the inhibitory activity against human and vaccinia virus UNG enzymes. Although even the best inhibitors had IC50 ≥ 100 μM, they were highly enriched in a common fragment, tetrahydro-2,4,6-trioxopyrimidinylidene (PyO3). In silico, PyO3 preferably docked into the enzyme’s active site, and in kinetic experiments, the inhibition was better consistent with the competitive mechanism. The toxicity of two best inhibitors for human cells was independent of the presence of methotrexate, which is consistent with the hypothesis that dUMP in genomic DNA is less toxic for the cell than strand breaks arising from the massive removal of uracil. We conclude that PyO3 may be a novel pharmacophore with the potential for development into UNG-targeting agents.


2021 ◽  
Author(s):  
Otavio Augusto Chaves ◽  
Carolina Q. Sacramento ◽  
Natalia Fintelman-Rodrigues ◽  
Jairo Ramos Temerozo ◽  
Filipe Pereira-Dutra ◽  
...  

Anticoagulants are associated with clinical benefit against the 2019 coronavirus disease (COVID-19), preventing COVID-19 associated coagulopathy. Blood coagulation factor Xa (FXa) and SARS-CoV-2 major protease (Mpro) share over 80% homology at the three-dimensional protein level. Thus, it is worth interrogating whether there is crosstalk between inhibitors and substrates between these enzymes. Here, we found that the clinically-approved FXa inhibitor apixaban targets SARS-CoV-2 Mpro with a 21-fold higher potency than boceprevir (GC376). Apixaban displayed a non-competitive mechanism of inhibition towards Mpro, since it targets the enzyme/substrate complex and the allosteric site onto the viral protease. Enzymatic assays were further validated in infected Calu-3 cells, which reveal that apixaban decreases the production of infectious viral particles in a dose-dependent manner, with an inhibitory potency in the micromolar range. Our results are in line with the proposed early use of anticoagulants, including FXa inhibitors, to improve clinical outcome of COVID-19 patients. In this context, apixaban may display a dual mechanism of action by targeting FXa to prevent coagulopathy and, at some level, SARS-CoV-2 Mpro.


2021 ◽  
Vol 22 (18) ◽  
pp. 10173
Author(s):  
Alina Milici ◽  
Alicia Sanchez ◽  
Karel Talavera

Because of their low cost and easy production, silica nanoparticles (SiNPs) are widely used in multiple manufacturing applications as anti-caking, densifying and hydrophobic agents. However, this has increased the exposure levels of the general population and has raised concerns about the toxicity of this nanomaterial. SiNPs affect the function of the airway epithelium, but the biochemical pathways targeted by these particles remain largely unknown. Here we investigated the effects of SiNPs on the responses of 16HBE14o- cultured human bronchial epithelial (16HBE) cells to the damage-associated molecular pattern ATP, using fluorometric measurements of intracellular Ca2+ concentration. Upon stimulation with extracellular ATP, these cells displayed a concentration-dependent increase in intracellular Ca2+, which was mediated by release from intracellular stores. SiNPs inhibited the Ca2+ responses to ATP within minutes of application and at low micromolar concentrations, which are significantly faster and more potent than those previously reported for the induction of cellular toxicity and pro-inflammatory responses. SiNPs-induced inhibition is independent from the increase in intracellular Ca2+ they produce, is largely irreversible and occurs via a non-competitive mechanism. These findings suggest that SiNPs reduce the ability of airway epithelial cells to mount ATP-dependent protective responses.


Sign in / Sign up

Export Citation Format

Share Document