Mode Switch Control of Two-Stage Photovoltaic Inverter after Losing Battery Storage in Islanded Microgrid

Author(s):  
Yujie Jiang ◽  
Zhenxiong Wang ◽  
Hao Yi ◽  
Fang Zhuo
1993 ◽  
Vol 26 (2) ◽  
pp. 839-842
Author(s):  
J. van Amerongen ◽  
R.A. Hilhorst ◽  
P. Löhnberg ◽  
H.J.A.F. Tulleken
Keyword(s):  

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Yiwei Ma ◽  
Ping Yang ◽  
Zhuoli Zhao ◽  
Yuewu Wang

An optimal economic operation method is presented to attain a joint-optimization of cost reduction and operation strategy for islanded microgrid, which includes renewable energy source, the diesel generator, and battery storage system. The optimization objective is to minimize the overall generating cost involving depreciation cost, operation cost, emission cost, and economic subsidy available for renewable energy source, while satisfying various equality and inequality constraints. A novel dynamic optimization process is proposed based on two different operation control modes where diesel generator or battery storage acts as the master unit to maintain the system frequency and voltage stability, and a modified particle swarm optimization algorithm is applied to get faster solution to the practical economic operation problem of islanded microgrid. With the example system of an actual islanded microgrid in Dongao Island, China, the proposed models, dynamic optimization strategy, and solution algorithm are verified and the influences of different operation strategies and optimization algorithms on the economic operation are discussed. The results achieved demonstrate the effectiveness and feasibility of the proposed method.


Author(s):  
B V Rajanna ◽  
SVNL Lalitha ◽  
Ganta Joga Rao ◽  
S K Shrivastava

Maximum power point tracking (MPPT) of a photo voltaic system with different temperature and insolation conditions used for Micro grids can be explained in this paper. The different steps of the design of this controller are presented together with its simulation and the feasibility of control methods to be adopted for the operation of a micro grid when it becomes isolated. Normally, the micro grid operates in interconnected mode with the medium voltage network; however, scheduled or forced isolation can take place. In such conditions, the micro grid must have the ability to operate stably and autonomously. An evaluation of the need of storage devices and load to take off strategies is included in this paper. Solar photovoltaic (PV) energy has witnessed double-digit growth in the past decade. The penetration of PV systems as distributed generators in low-voltage grids has also seen significant attention. In addition, the need for higher overall grid efficiency and reliability has boosted the interest in the microgrid concept. High-efficiency PV-based microgrids require maximum power point tracking (MPPT) controllers to maximize the harvested energy due to the nonlinearity in PV module characteristics. This paper proposes an approach of coordinated and integrated control of solar PV generators with the maximum power point tracking (MPPT) control and battery storage control to provide voltage and frequency (V-f) support to an islanded microgrid. The simulation studies are carried out with the IEEE 13-bus feeder test system in grid connected and islanded microgrid modes. The MPPT of a Photovoltaic System for Micro Grid operation is successfully designed and simulated by using MATLAB/Simulink Software in this paper.


2013 ◽  
Vol 459 ◽  
pp. 361-367 ◽  
Author(s):  
Yi Hsuan Hung ◽  
Chien Hsun Wu ◽  
Chun Ying Lin ◽  
Yu Ming Tung

This paper studies the system modeling and mode-switch control for a novel 3-mode (serial/parallel/pure electric) range-extender electric vehicle (REEV). The REEV is modeled with low-order dynamics of 8 subsystems: the driving pattern, drivers behavior, lithium batteries, a spark-ignition engine, a traction motor, a generator, a 6-speed transmission, and a longitudinal vehicle dynamics. Dynamics of the REEV is the integration of above subsystems. To properly evaluate the system performance of the REEV, a rule-based mode-switch control rule is designed with 7 operation modes (System Ready, EV, Serial, Coast Down, Coast-Down Regen., Idle Regen., Parallel). By applying the control rules for the 3-mode REEV, the vehicle can properly operate. Simulation is conducted on the Matlab/Simulink platform. The results show that this study details the system dynamics of subsystems and the vehicle. Meanwhile the rule-based control strategy governs the subsystems well. The developed simulator can be utilized for specification designs of real vehicles and for vehicle control unit designs in the near future.


Sign in / Sign up

Export Citation Format

Share Document