mode switch
Recently Published Documents


TOTAL DOCUMENTS

229
(FIVE YEARS 45)

H-INDEX

17
(FIVE YEARS 3)

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 424
Author(s):  
Samuel Kärnell ◽  
Liselott Ericson

There is growing interest in using electric motors as prime movers in mobile hydraulic systems. This increases the interest in so-called pump-controlled systems, where each actuator has its own drive unit. Such architectures are primarily appealing in applications where energy efficiency is important and electric recuperation is relevant. An issue with pump-controlled systems is, however, mode-switch oscillations which can appear when the pressure levels in the system are close to the switching condition. In this paper, the mode-switching behavior of different generalized closed and open circuit configurations is investigated. The results show that the choice of where to sense the pressures has a huge impact on the behavior. They also show that, if the pressure sensing components are properly placed, closed and open circuits can perform very similarly, but that mode-switch oscillations still can occur in all circuits. Active hysteresis control is suggested as a solution and its effectiveness is analyzed. The outcome from the analysis shows that active hysteresis control can reduce the risk for mode-switch oscillations significantly.


Author(s):  
Herbert Dawid ◽  
Serhat Gezer

AbstractWe study Markov perfect equilibria (MPE) of two-player multi-mode differential games with controlled state dynamics, where one player controls the transition between modes. Different types of MPE are characterized distinguishing between delay equilibria, inducing for some initial conditions mode switches after a positive finite delay, and now or never equilibria, under which, depending on the initial condition, a mode switch occurs immediately or never. These results are applied to analyze the MPE of a game capturing the dynamic interaction between two incumbent firms among which one has to decide when to extend its product range by introducing a new product. The market appeal of the new product can be influenced over time by both firms through costly investments. Under a wide range of market introduction costs a now or never equilibrium coexists with a continuum of delay equilibria, each of them inducing a different time of product introduction.


2021 ◽  
Vol 33 (12) ◽  
pp. 124102
Author(s):  
Nian-Hua Liu ◽  
Xiang-Ru Li ◽  
Peng-Fei Hao ◽  
Xi-Wen Zhang ◽  
Feng He
Keyword(s):  

2021 ◽  
Vol 12 ◽  
Author(s):  
Mingzi Qu ◽  
Ping Lu ◽  
Karl Bellve ◽  
Lawrence M. Lifshitz ◽  
Ronghua ZhuGe

Adenomyosis is a debilitating gynecological disease of the uterus with no medicinal cure. The tissue injury and repair hypothesis for adenomyosis suggests that uterine hyperperistalsis or dysperistalsis plays a pivotal role in establishing adenomyotic lesions. However, specific impairments in uterine peristalsis and the underlying cellular signals for these changes in adenomyosis remain elusive. Here, we report a precision-cut uterine slice preparation that preserves in vivo uterine architecture and generates peristalsis similar to that seen in the whole uterus. We found that uterine peristalsis in neonatal mice at day 14 and adult mice at day 55 presents as bursts with multiple peaks induced by intracellular Ca2+ oscillations. Using a mouse model of adenomyosis induced by tamoxifen, a selective estrogen receptor modulator, we discovered that uterine peristalsis and Ca2+ oscillations from adenomyotic uteri on days 14 and 55 become spikes (single peaks) with smaller amplitudes. The peak frequency of Ca2+ oscillations or peristalsis does not show a difference between control and adenomyotic mice. However, both the estimated force generated by uterine peristalsis and the total Ca2+ raised by Ca2+ oscillations are smaller in uteri from adenomyotic mice. Uteri from adenomyotic mice on day 14, but not on day 55, exhibit hyperresponsiveness to oxytocin. Embryo implantations are decreased in adenomyotic adult mice. Our results reveal a mode switch from bursts to spikes (rather than an increased peak frequency) of uterine Ca2+ oscillations and peristalsis and concurrent hyperresponsiveness to oxytocin in the neonatal stage are two characteristics of adenomyosis. These characteristics may contribute to embryo implantation impairments and decreased fertility in adenomyosis.


2021 ◽  
Author(s):  
Daisuke Tone ◽  
Koji L. Ode ◽  
Qianhui Zhang ◽  
Hiroshi Fujishima ◽  
Rikuhiro G. Yamada ◽  
...  

ABSTRACTThe reduced sleep duration observed in Camk2a and Camk2b knockout mice revealed the role of Ca2+/calmodulin-dependent protein kinase II (CaMKII)α/CAMKIIβ as sleep-promoting kinases and lead to the phosphorylation hypothesis of sleep. However, the underlying mechanism of sleep regulation by kinases and protein phosphorylation is largely unknown. Here, we demonstrate that the phosphorylation states of CaMKIIβ regulates sleep duration and sleep needs. Importantly, the activation or inhibition of CaMKIIβ can increase or decrease sleep duration by almost two-fold, supporting the role of CaMKIIβ as a core sleep regulator in mammals. This sleep regulation depends on the kinase activity of CaMKIIβ in excitatory neurons. Furthermore, CaMKIIβ mutants mimicking different phosphorylation states can regulate various sleep steps including sleep induction, sleep maintenance, and sleep cancelation. Key CaMKIIβ residues responsible for the mode switch undergo ordered (auto-)phosphorylation. We thus propose that ordered multi-site phosphorylation of CaMKIIβ underlies multi-step sleep regulation in mammals.


2021 ◽  
Vol 13 (4) ◽  
pp. 1-6
Author(s):  
Yang Gao ◽  
Yan Xu ◽  
Songyue Liu ◽  
Xiaojian Fan ◽  
Xibin Wang ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document