Performance evaluation of variable speed control of two-phase induction motors

Author(s):  
J. Sinthusonthichat ◽  
V. Kinnares
Author(s):  
Salam Waley Shneen ◽  
Mohammed Qasim Sulttan ◽  
Manal Hadi Jaber

There are many applications of two-phase hybrid stepping motor (2Ph-HSM) system. The robotic grinding system (RGS) one of these applications. In this work, under the title variable speed control. The aim is Simulink the 2Ph-HSM in RGS with a proportional-integral controller (PIC) and optimization unit such as Genetic Algorithm (GA) which tuning PIC as (GA_PIC) to improve the RGS action by improving the parameters of PIC. Also comparing the act of PIC and GA_PIC to see which state is the best. The simulation results of this work show the GA_PIC is the best that comparative with PIC.


2017 ◽  
Vol 75 ◽  
pp. 1306-1319 ◽  
Author(s):  
Mohammad Jannati ◽  
Sajad Abdollahzadeh Anbaran ◽  
Seyed Hesam Asgari ◽  
Wee Yen Goh ◽  
Ali Monadi ◽  
...  

2016 ◽  
Vol 63 (12) ◽  
pp. 7754-7764 ◽  
Author(s):  
Dan-Yong Li ◽  
Wen-Chuan Cai ◽  
Peng Li ◽  
Zi-Jun Jia ◽  
Hou-Jin Chen ◽  
...  

2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Tianqian Xia ◽  
Xianghua Huang

Abstract A method of variable speed control system for turboprop engine is presented in this paper. Firstly, the steady operation state of turboprop engine is analyzed, and the operating line is figured out in the steady state characteristic diagram, which is the design basis of Engine Thrust Management System (ETMS). Secondly, the reference model sliding mode multivariable control is used to design the control law to follow the speed instructions given by ETMS. Finally, the optimization of the minimum fuel consumption operating curve is realized, and the control system designed is applied to a numerical model of a turboprop engine. The simulation results show that compared with the constant speed control system, the variable speed control system can reduce the specific fuel consumption by 2.37 % on average and 3.1 % in steady state conditions. Furthermore, the method can enable the pilot to manipulate the turboprop aircraft by using only one throttle lever, which can greatly reduce the pilot operation burden.


Sign in / Sign up

Export Citation Format

Share Document