robotic grinding
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 24)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Xiaozhi Feng ◽  
Rui Lv ◽  
Chen Qian ◽  
Yudi Wang ◽  
Linli Tian ◽  
...  

Abstract When the non-standard customized brush roller tool is used for robotic grinding of large-scale components, the clamping and positioning error of the brush roller at the end of the robot is extremely easy to cause misalignment at the brush roller - workpiece contact interface, which will affect the machining accuracy and surface quality. In order to ensure the parallel contact between the brush roller and the workpiece surface during the machining process, a calculation model of the angular misalignment at the brush roller - workpiece contact interface is proposed based on the elastic contact force perception, and then the accurate positioning of the robot end brush roller is realized by a fast compensation method. Firstly, according to the geometric force relationship between the brush roller and the workpiece, as well as the determined brush roller material properties parameters, the estimation model of angular misalignment is established. Secondly, both the axial force and normal torque at the time of initial contact detected by the force-controlled sensor are regarded as the input parameters in the model. Further, the calculated brush roller - workpiece contact offset is used as the geometric error compensation amount, and the brush roller is deflected to achieve error compensation by the robot RAPID program control command. The finite element simulation results are compared with the theoretical calculation values, and the average relative error is 15.1%. The experiment on robotic grinding and brushing of high-speed rail body indicates that the compensated angle can be reduced to 0.024° from an average of 0.179° before compensation, coupled with uniform material removal depth. The proposed method can significantly improve the contour accuracy of large-scale components.


Author(s):  
Ziling Wang ◽  
Lai Zou ◽  
Guoyue Luo ◽  
Chong Lv ◽  
Yun Huang

2021 ◽  
Vol 35 ◽  
pp. 315-322
Author(s):  
Kedar Joshi ◽  
Shreyes N. Melkote ◽  
Matthew Anderson ◽  
Rahul Chaudhari

Author(s):  
Lubna Farhi ◽  
Farhan Ur Rehman

This article proposes a Proportional, Integral, and Derivative (PID) learning controller for rigid robotic disk grinding mechanism. It has been observed that the stiffness of the robotic arm for a grinder has a direct correlation with the sensitivity of the grinding forces. It is also drastically influenced by the end-effector path tracking error resulting in limited accuracy of the robot. The error in robot’s accuracy is also increased by external interferences, such as surface imperfections and voids in the subject material. These errors can be mitigated via efficient feedback. In the proposed methodology, the controller gain is tuned by implementing a learning-based methodology to PID controllers. The learning control for the robotic grinding system helps by progressively decreasing error between the actual grinded paths and required trace. Experimental results demonstrate that as the grinder machines the required path iteratively, its grinding accuracy improves due to the learning algorithm.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248993
Author(s):  
Guoyang Wan ◽  
Guofeng Wang ◽  
Yunsheng Fan

Due to ever increasing precision and automation demands in robotic grinding, the automatic and robust robotic grinding workstation has become a research hot-spot. This work proposes a grinding workstation constituting of machine vision and an industrial manipulator to solve the difficulty of positioning rough metal cast objects and automatic grinding. Faced with the complex characteristics of industrial environment, such as weak contrast, light nonuniformity and scarcity, a coarse-to-fine two-step localization strategy was used for obtaining the object position. The deep neural network and template matching method were employed for determining the object position precisely in the presence of ambient light. Subsequently, edge extraction and contour fitting techniques were used to measure the position of the contour of the object and to locate the main burr on its surface after eliminating the influence of burr. The grid method was employed for detecting the main burrs, and the offline grinding trajectory of the industrial manipulator was planned with the guidance of the coordinate transformation method. The system greatly improves the automaticity through the entire process of loading, grinding and unloading. It can determine the object position and target the robotic grinding trajectory by the shape of the burr on the surface of an object. The measurements indicate that this system can work stably and efficiently, and the experimental results demonstrate the high accuracy and high efficiency of the proposed method. Meanwhile, it could well overcome the influence of the materials of grinding work pieces, scratch and rust.


Sign in / Sign up

Export Citation Format

Share Document