Compact dual band convexo-concave microstrip patch antenna having bow tie slot with Alteration of Dielectric Substrate for remote sensing applications

Author(s):  
Kanika Joshi ◽  
Vivekanand Tiwari ◽  
Dheeraj Bhardwaj
2020 ◽  
Vol 8 (5) ◽  
pp. 4539-4543

In this paper, a dual-band generation in rectangular microstrip patch antenna (RMPA) using a superstrate metal ring has been proposed. In this configuration, a metal ring is placed above the rectangular patch with the support of two dielectric posts. The metal ring behaves as a superstrate layer and resonator for the lower band, the other band is generated by microstrip patch and hence the combined configuration metal ring and patch gives dual-band characteristics. The lower band resonates at 9 GHz with an impedance bandwidth of 6.8% and higher band at 11.35 GHz with impedance bandwidth of 3.1%. The co-polarized peak gain values at these frequencies are 8.2 dBi and 10.1 dBi respectively. This may be used in applications like airborne and naval-radar. The prototypes are fabricated using commercially available dielectric substrate (RT-Duriod r = 2.2 and thickness h =1.6 mm). The measured results show good agreement with the simulated predictions.


Author(s):  
N Ismail ◽  
F Oktafiani ◽  
F Makmur ◽  
F D Ramadhan ◽  
M A Ramdhani ◽  
...  

2018 ◽  
Vol 7 (2.7) ◽  
pp. 532 ◽  
Author(s):  
R Siri Chandana ◽  
P Sai Deepthi ◽  
D Sriram Teja ◽  
N Veera JayaKrishna ◽  
M Sujatha

This article is about a single band microstrip patch antenna used for the 5G applications. And this antenna is suitable for the millimeter wave frequency. The patch antenna design consists of 2 E shaped slots and 1 H shaped slot. These slots are loaded on the radiating patch with the 50 ohms microstrip feed line. For the simulation purpose, Rogers’s RT5880 dielectric substrate with relative permittivity of 2.2 and loss tangent of 0.0009 is used. The design and simulation of the antenna is done using HFSS (High Frequency Structure Simulator) software. The results are simulated for the parameters Return loss, VSWR, 3D Radiation pattern. The proposed antenna has a return loss of -42.4383 at 59 GHz millimeter wave frequency. 


Sign in / Sign up

Export Citation Format

Share Document