scholarly journals Design of Microstrip Patch Antenna for Dual-band Operation using Metal Ring Superstrate

2020 ◽  
Vol 8 (5) ◽  
pp. 4539-4543

In this paper, a dual-band generation in rectangular microstrip patch antenna (RMPA) using a superstrate metal ring has been proposed. In this configuration, a metal ring is placed above the rectangular patch with the support of two dielectric posts. The metal ring behaves as a superstrate layer and resonator for the lower band, the other band is generated by microstrip patch and hence the combined configuration metal ring and patch gives dual-band characteristics. The lower band resonates at 9 GHz with an impedance bandwidth of 6.8% and higher band at 11.35 GHz with impedance bandwidth of 3.1%. The co-polarized peak gain values at these frequencies are 8.2 dBi and 10.1 dBi respectively. This may be used in applications like airborne and naval-radar. The prototypes are fabricated using commercially available dielectric substrate (RT-Duriod r = 2.2 and thickness h =1.6 mm). The measured results show good agreement with the simulated predictions.

Author(s):  
Sanyog Rawat ◽  
Kamlesh Kumar Sharma

<p class="Abstract"><span style="font-weight: normal;">In this paper a new geometry of patch antenna is proposed with improved bandwidth and circular polarization. The radiation performance of circularly polarized rectangular patch antenna is investigated by applying IE3D simulation software and its performance is compared with that of conventional rectangular patch antenna.</span> <span style="font-weight: normal;">Finite Ground truncation technique is used to obtain the desired results. The simulated return loss, axial ratio and smith chart with frequency for the proposed antenna is reported in this paper. It is shown that by selecting suitable ground-plane dimensions, air gap and location of the slits, the impedance bandwidth can be enhanced upto 10.15 % as compared to conventional rectangular patch (4.24%) with an axial ratio bandwidth of 4.05%.</span></p><p> </p><p> </p>


2014 ◽  
Vol 8 (2) ◽  
pp. 237-242 ◽  
Author(s):  
Sudeep Baudha ◽  
Dinesh Kumar Vishwakarma

This paper presents a simple broadband planar monopole microstrip patch antenna with curved slot and partial ground plane. The proposed antenna is designed and fabricated on commercially available FR4 material with εr = 4.3 and 0.025 loss tangent. Bandwidth enhancement has been achieved by introducing a curved slot in the patch and optimizing the gap between the patch and the partial ground plane and the gap between the curved slot and the edge of the patch. Simulated peak gain of the proposed antenna is 4.8 dB. The impedance bandwidth (defined by 10 dB return loss) of the proposed antenna is 109% (2–6.8 GHz), which shows bandwidth enhancement of 26% as compared with simple monopole antenna. The antenna is useful for 2.4/5.2/5.8-GHz WLAN bands, 2.5/3.5/5.5-GHz WiMAX bands, and other wireless communication services. Measured results show good agreement with the simulated results. The proposed antenna details are described and measured/simulated results are elaborated.


2020 ◽  
Vol 16 ◽  
pp. 01-12
Author(s):  
Rabnawaz Sarmad Uqaili ◽  
Junaid Ahmed Uqaili ◽  
Sidrish Zahra ◽  
Faraz Bashir Soomro ◽  
Ali Akbar

This paper presents the design of a dual-band microstrip patch antenna for Wi-Fi that operates at 2.5 GHz and 5.8 GHz. The antenna contains a rectangular patch with two rectangular slots. The first slot is incorporated in the patch while the second slot is incorporated in the ground plane. The antenna is based on a microstrip fed rectangular patch printed on the FR-4 epoxy substrate with a dielectric constant of 4.4 and a thickness of 1.6 mm with patch size 24 mm × 21 mm. The simulated result shows that the realized antenna successfully works on dual-band and subsequently achieves a bandwidth of 100 MHz and 200 MHz as well as the return loss about -29.9 dB and -15.16 dB for 2.5 GHz and 5.8 GHz respectively. A stable omnidirectional radiation pattern is observed in the operating frequency bands. The antenna meets the required specifications for 802.11 WLAN standards.


2019 ◽  
Vol 9 (6) ◽  
pp. 4962-4967
Author(s):  
M. M. Nahas ◽  
M. Nahas

The microstrip patch antenna is used in various communication applications including cellular phones, satellites, missiles, and radars, due to its several attractive features such as small size and weight, low cost, and easy fabrication. The microstrip patch antenna consists of a top radiating patch, a bottom ground plane, and a dielectric substrate in between. The patch can have different shapes, the rectangular patch being the most commonly used. In practice, the microstrip antenna suffers from narrow bandwidth and low gain efficiency. This paper aims to enhance the bandwidth and efficiency of a rectangular-patch antenna using the High-Frequency Structure Simulator (HFSS). Initially different patch sizes and substrate materials are investigated and optimal antenna parameters are achieved. Then, the antenna performance is further enhanced by inserting single and double slot designs into the patch. Two cost-effective feeding methods are involved in the investigation. The antenna is designed to operate in the Super High Frequency (SHF) band.


A wideband circular microstrip patch antenna (CMPA) has been presented employing a rectangular metal sheet superstrate. The proposed concept follows a unique, simple, and a flexible design approach to enhance the bandwidth of a circular patch. A simple change in the conventional antenna geometry has been suggested by adding a rectangular metal sheet superstrate, placed symmetrically above the patch. A cylindrical shaped foam spacer has been used to provide mechanical support to the optimized superstrate. The proposed antenna offers about 36% of impedance matching bandwidth ranging between 8.46 GHz to 12.06 GHz with a total bandwidth of 3.6 GHz. Whereas, a conventional circular patch, resonating at 9.96 GHz, hardly shows about 4.8% of impedance bandwidth (480 MHz) only. In addition to the enhanced bandwidth characteristics, the proposed antenna, also reveals a little increase in the gain throughout the operating frequency band. For the experimental validation, a set of antenna prototype has been fabricated using the commercially available dielectric substrate. The measured result is very closely agreed with the simulated predictions.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Xiaoyan Zhang ◽  
Zhaopeng Teng ◽  
Zhiqing Liu ◽  
Bincheng Li

A dual band microstrip patch antenna integrated with pinwheel-shaped electromagnetic band-gap (EBG) structures is proposed. The patch antenna consists of a pair of spiral slots on the patch and is fed by using coaxial line. Its full-wave simulation predicts dual bands from 4.43 GHz to 4.56 GHz and from 4.96 GHz to 5.1 GHz in the C-band. The designed EBG with eight pinwheel-shaped slots addresses smaller frequency drift compared with the traditional square mushroom-like EBG when applied to the patch antenna. With the help of designed EBG structure, the impedance bandwidth, radiation efficiency, and gain of the patch antenna are improved significantly. The 10 dB impedance bandwidth is extended by 3.4% and 6.5% at the low- and high-frequency bands, respectively. The radiation efficiency is increased by 5% and 17.8%, and the realized gain is enhanced by 1.87 dB and 1.56 dB at 4.57 GHz and 5.06 GHz, respectively. The designed EBG structure may have many applications in other types of planar antennas.


Author(s):  
Akanksha Gupta ◽  
D K Srivastava ◽  
J.P. Saini

<p class="Author">When a patch is placed close to the fed patch, get excited due to parasitic coupling between the two elements. This proposed work presents theoretical analysis of rectangular gap coupled microstrip patch antenna (R-GCMSA) using circuit concept model, and the effect of gap(g), feed width (W<sub>f</sub>), and feed length on performance of the impedance bandwidth is also studied, it is observe as the gap between the parasitic element is increased resonant frequency shifted towards the parasitic patch resonant frequency for broadening the impedance bandwidth. The maximum impedance bandwidth for the proposed antenna design is 12.7% in the frequency range of 3.24-3.7GHz measured, with rectangular shape ground plane size 6030m.m<sup>2</sup>.the highest directivity achieved is 4dBi.The proposed design is simple in structure and compact in size, proposed design is simulated on IE3D Microwave simulator, the simulated result is in good agreement with obtained theoretical and measured results.</p>


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
M. R. Ahsan ◽  
M. T. Islam ◽  
M. Habib Ullah ◽  
W. N. L. Mahadi ◽  
T. A. Latef

This paper presents a compact sized inset-fed rectangular microstrip patch antenna embedded with double-P slots. The proposed antenna has been designed and fabricated on ceramic-PTFE composite material substrate of high dielectric constant value. The measurement results from the fabricated prototype of the antenna show −10 dB reflection coefficient bandwidths of 200 MHz and 300 MHz with center resonant frequency of 1.5 GHz and 4 GHz, respectively. The fabricated antenna has attained gains of 3.52 dBi with 81% radiation efficiency and 5.72 dBi with 87% radiation efficiency for lower band and upper band, respectively. The measured E- and H-plane radiation patterns are also presented for better understanding. Good agreement between the simulation and measurement results and consistent radiation patterns make the proposed antenna suitable for GPS and C-band applications.


2017 ◽  
Vol 9 (9) ◽  
pp. 1877-1881 ◽  
Author(s):  
Laaya Sabri ◽  
Nasrin Amiri ◽  
Keyvan Forooraghi

A new single-feed aperture-coupled, X-band microstrip patch antenna array with circular polarization (CP) is designed. CP is achieved using indented microstrip patches fed through the slots on a substrate integrated waveguide. The antenna has the high radiation efficiency more than 90% over the operating frequency. Impedance bandwidth (VSWR < 2) and axial ratio bandwidth (AR < 3 dB) of 11.8, and 10.9% is attained, respectively. Good agreement is achieved between simulated and measured results.


Sign in / Sign up

Export Citation Format

Share Document