Existence of Solutions for a Nonlinear Problem at Resonance

Author(s):  
Mustapha Haddaoui ◽  
Hafid Lebrimchi ◽  
Brahim Ouhamou ◽  
Najib Tsouli
2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Assia Guezane-Lakoud ◽  
Adem Kılıçman

Abstract The purpose of this study is to discuss the existence of solutions for a boundary value problem at resonance generated by a nonlinear differential equation involving both right and left Caputo fractional derivatives. The proofs of the existence of solutions are mainly based on Mawhin’s coincidence degree theory. We provide an example to illustrate the main result.


2016 ◽  
Vol 56 (1) ◽  
pp. 143-153 ◽  
Author(s):  
Katarzyna Szymańska-Dębowska

Abstract This work is devoted to the existence of solutions for a system of nonlocal resonant boundary value problem $$\matrix{{x'' = f(t,x),} \hfill & {x'(0) = 0,} \hfill & {x'(1) = {\int_0^1 {x(s)dg(s)},} }} $$ where f : [0, 1] × ℝk → ℝk is continuous and g : [0, 1] → ℝk is a function of bounded variation.


2016 ◽  
Vol 53 (1) ◽  
pp. 42-52
Author(s):  
Katarzyna Szymańska-Dȩbowska

The paper focuses on existence of solutions of a system of nonlocal resonant boundary value problems , where f : [0, 1] × ℝk → ℝk is continuous and g : [0, 1] → ℝk is a function of bounded variation. Imposing on the function f the following condition: the limit limλ→∞f(t, λ a) exists uniformly in a ∈ Sk−1, we have shown that the problem has at least one solution.


2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Man Xu ◽  
Ruyun Ma

We investigate the spectrum structure of the eigenvalue problem u4x=λux,  x∈0,1;  u0=u1=u′0=u′1=0. As for the application of the spectrum structure, we show the existence of solutions of the fourth-order boundary value problem at resonance -u4x+λ1ux+gx,ux=hx,  x∈0,1;  u0=u1=u′0=u′1=0, which models a statically elastic beam with both end-points being cantilevered or fixed, where λ1 is the first eigenvalue of the corresponding eigenvalue problem and nonlinearity g may be unbounded.


1997 ◽  
Vol 40 (4) ◽  
pp. 464-470 ◽  
Author(s):  
Chung-Cheng Kuo

AbstractWe study the existence of solutions of the semilinear equations (1) in which the non-linearity g may grow superlinearly in u in one of directions u → ∞ and u → −∞, and (2) −Δu + g(x, u) = h, in which the nonlinear term g may grow superlinearly in u as |u| → ∞. The purpose of this paper is to obtain solvability theorems for (1) and (2) when the Landesman-Lazer condition does not hold. More precisely, we require that h may satisfy are arbitrarily nonnegative constants, . The proofs are based upon degree theoretic arguments.


Sign in / Sign up

Export Citation Format

Share Document