Pollination based optimization for feature reduction at feature level fusion of speech & signature biometrics

Author(s):  
Gaganpreet Kaur ◽  
Dheerendra Singh ◽  
Sukhpreet Kaur
2019 ◽  
Vol 8 (3) ◽  
pp. 2761-2767

Iris recognition system has gained prominent focus because of its uniqueness, stability over time. But the recognition level of single biometric based recognition systems is greatly affected by environmental conditions, physiological deficiency. Multi-biometric systems diminish this problem with the fusion of features collected from various traits or samples of the same trait, a single trait by employing multiple algorithms or multiple instances. To gain the advantages of multi-biometric systems in iris recognition, a Multi-algorithmic iris recognition system has been proposed where Texture features from iris are extracted by using 2D-Log Gabor filter and Phase features are extracted by Haar Wavelet; And these features can be integrated at various levels like Decision, Rank, Score, feature, and pixel. Even though the feature level fusion contains rich information about biometric samples when compared to remaining fusion levels; it involves mapping complexity, high dimensional feature space. To gain advantage of feature level fusion in iris recognition and to overcome the problem of resulted high dimensional feature space, Genetic Algorithm (GA) based reduction scheme, Principal Component Analysis (PCA) reduction strategy and a hybrid reduction scheme which is a combination of PCA and GA have been applied to reduce the resulted feature space. The performance of these reduction strategies have evaluated on CASIA iris database, IIT Delhi iris database using Machine Learning approaches. The results have shown that the feature space has dramatically reduced while keeping recognition accuracy and also revealed that space and time requirements have significantly decreased after employing feature reduction schemes.


2010 ◽  
Vol 2 (1) ◽  
pp. 28-38 ◽  
Author(s):  
K. Kannan ◽  
S. Arumuga Perumal ◽  
K. Arulmozhi

2021 ◽  
Author(s):  
Zhibing Xie

Understanding human emotional states is indispensable for our daily interaction, and we can enjoy more natural and friendly human computer interaction (HCI) experience by fully utilizing human’s affective states. In the application of emotion recognition, multimodal information fusion is widely used to discover the relationships of multiple information sources and make joint use of a number of channels, such as speech, facial expression, gesture and physiological processes. This thesis proposes a new framework of emotion recognition using information fusion based on the estimation of information entropy. The novel techniques of information theoretic learning are applied to feature level fusion and score level fusion. The most critical issues for feature level fusion are feature transformation and dimensionality reduction. The existing methods depend on the second order statistics, which is only optimal for Gaussian-like distributions. By incorporating information theoretic tools, a new feature level fusion method based on kernel entropy component analysis is proposed. For score level fusion, most previous methods focus on predefined rule based approaches, which are usually heuristic. In this thesis, a connection between information fusion and maximum correntropy criterion is established for effective score level fusion. Feature level fusion and score level fusion methods are then combined to introduce a two-stage fusion platform. The proposed methods are applied to audiovisual emotion recognition, and their effectiveness is evaluated by experiments on two publicly available audiovisual emotion databases. The experimental results demonstrate that the proposed algorithms achieve improved performance in comparison with the existing methods. The work of this thesis offers a promising direction to design more advanced emotion recognition systems based on multimodal information fusion and has great significance to the development of intelligent human computer interaction systems.


Sign in / Sign up

Export Citation Format

Share Document