Secured Geospatial Data Storage and Retrieval Using Spatial Hadoop Framework in Cloud Environment

Author(s):  
S. Karthi ◽  
S. Prabu
2019 ◽  
pp. 353-388
Author(s):  
S. Vasavi ◽  
Mallela Padma Priya ◽  
Anu A. Gokhale

We are moving towards digitization and making all our devices, such as sensors and cameras, connected to internet, producing bigdata. This bigdata has variety of data and has paved the way to the emergence of NoSQL databases, like Cassandra, for achieving scalability and availability. Hadoop framework has been developed for storing and processing distributed data. In this chapter, the authors investigated the storage and retrieval of geospatial data by integrating Hadoop and Cassandra using prefix-based partitioning and Cassandra's default partitioning algorithm (i.e., Murmur3partitioner) techniques. Geohash value is generated, which acts as a partition key and also helps in effective search. Hence, the time taken for retrieving data is optimized. When users request spatial queries like finding nearest locations, searching in Cassandra database starts using both partitioning techniques. A comparison on query response time is made so as to verify which method is more effective. Results show the prefix-based partitioning technique is more efficient than Murmur3 partitioning technique.


Author(s):  
S. Vasavi ◽  
Mallela Padma Priya ◽  
Anu A. Gokhale

We are moving towards digitization and making all our devices, such as sensors and cameras, connected to internet, producing bigdata. This bigdata has variety of data and has paved the way to the emergence of NoSQL databases, like Cassandra, for achieving scalability and availability. Hadoop framework has been developed for storing and processing distributed data. In this chapter, the authors investigated the storage and retrieval of geospatial data by integrating Hadoop and Cassandra using prefix-based partitioning and Cassandra's default partitioning algorithm (i.e., Murmur3partitioner) techniques. Geohash value is generated, which acts as a partition key and also helps in effective search. Hence, the time taken for retrieving data is optimized. When users request spatial queries like finding nearest locations, searching in Cassandra database starts using both partitioning techniques. A comparison on query response time is made so as to verify which method is more effective. Results show the prefix-based partitioning technique is more efficient than Murmur3 partitioning technique.


Author(s):  
Umesh Banodha ◽  
Praveen Kumar Kataria

Cloud is an emerging technology that stores the necessary data and electronic form of data is produced in gigantic quantity. It is vital to maintain the efficacy of this data the need of data recovery services is highly essential. Cloud computing is anticipated as the vital foundation for the creation of IT enterprise and it is an impeccable solution to move databases and application software to big data centers where managing data and services is not completely reliable. Our focus will be on the cloud data storage security which is a vital feature when it comes to giving quality service. It should also be noted that cloud environment comprises of extremely dynamic and heterogeneous environment and because of high scale physical data and resources, the failure of data centre nodes is completely normal.Therefore, cloud environment needs effective adaptive management of data replication to handle the indispensable characteristic of the cloud environment. Disaster recovery using cloud resources is an attractive approach and data replication strategy which attentively helps to choose the data files for replication and the strategy proposed tells dynamically about the number of replicas and effective data nodes for replication. Thus, the objective of future algorithm is useful to help users together the information from a remote location where network connectivity is absent and secondly to recover files in case it gets deleted or wrecked because of any reason. Even, time oriented problems are getting resolved so in less time recovery process is executed.


2018 ◽  
Vol 30 (4) ◽  
pp. 14-31 ◽  
Author(s):  
Suyel Namasudra ◽  
Pinki Roy

This article describes how nowadays, cloud computing is one of the advanced areas of Information Technology (IT) sector. Since there are many hackers and malicious users on the internet, it is very important to secure the confidentiality of data in the cloud environment. In recent years, access control has emerged as a challenging issue of cloud computing. Access control method allows data accessing of an authorized user. Existing access control schemes mainly focus on the confidentiality of the data storage. In this article, a novel access control scheme has been proposed for efficient data accessing. The proposed scheme allows reducing the searching cost and accessing time, while providing the data to the user. It also maintains the security of the user's confidential data.


Author(s):  
Niksa Blonder ◽  
Frank Delaglio

The Nuclear Magnetic Resonance Spectral Measurement Database (NMR-SMDB) was developed for the purpose of organizing and searching NMR spectral data of protein therapeutics, linking spectra to corresponding sample information and enabling quick access to full datasets and entire studies. In addition to supporting internal research at the National Institute of Standards and Technology (NIST), the system could facilitate data access to stakeholders outside of NIST, and future versions of the database software itself could be installed by others for their own data storage and retrieval.


Sign in / Sign up

Export Citation Format

Share Document