VoWiFi Cell Capacity Estimation Using Fifth Generation WLAN Standard

Author(s):  
Ayes Chinmay ◽  
Hemanta Kumar Pati
2019 ◽  
Vol 13 (9) ◽  
pp. 1225-1235
Author(s):  
Rajiv Senapati ◽  
Hemanta Kumar Pati

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
AlMuthanna Turki Nassar ◽  
Ahmed Iyanda Sulyman ◽  
Abdulhameed Alsanie

This paper presents radio frequency (RF) capacity estimation for millimeter wave (mm-wave) based fifth-generation (5G) cellular networks using field-level simulations. It is shown that, by reducing antenna beamwidth from 65° to 30°, we can enhance the capacity of mm-wave cellular networks roughly by 3.0 times at a distance of 220 m from the base station (BS). This enhancement is far much higher than the corresponding enhancement of 1.2 times observed for 900 MHz and 2.6 GHz microwave networks at the same distance from the BS. Thus the use of narrow beamwidth transmitting antennas has more pronounced benefits in mm-wave networks. Deployment trials performed on an LTE TDD site operating on 2.6 GHz show that 6-sector site with 27° antenna beamwidth enhances the quality of service (QoS) roughly by 40% and more than doubles the overall BS throughput (while enhancing the per sector throughput 1.1 times on average) compared to a 3-sector site using 65° antenna beamwidth. This agrees well with our capacity simulations. Since mm-wave 5G networks will use arbitrary number of beams, with beamwidth much less than 30°, the capacity enhancement expected in 5G system when using narrow beamwidth antennas would be much more than three times observed in our simulations.


Author(s):  
Hoang Nhu Dong ◽  
Hoang Nam Nguyen ◽  
Hoang Trong Minh ◽  
Takahiko Saba

Femtocell networks have been proposed for indoor communications as the extension of cellular networks for enhancing coverage performance. Because femtocells have small coverage radius, typically from 15 to 30 meters, a femtocell user (FU) walking at low speed can still make several femtocell-to-femtocell handovers during its connection. When performing a femtocell-to-femtocell handover, femtocell selection used to select the target handover femtocell has to be able not only to reduce unnecessary handovers and but also to support FU’s quality of service (QoS). In the paper, we propose a femtocell selection scheme for femtocell-tofemtocell handover, named Mobility Prediction and Capacity Estimation based scheme (MPCE-based scheme), which has the advantages of the mobility prediction and femtocell’s available capacity estimation methods. Performance results obtained by computer simulation show that the proposed MPCE-based scheme can reduce unnecessary femtocell-tofemtocell handovers, maintain low data delay and improve the throughput of femtocell users. DOI: 10.32913/rd-ict.vol3.no14.536


Vestnik MEI ◽  
2018 ◽  
Vol 5 (5) ◽  
pp. 158-165
Author(s):  
Roman S. Kulikov ◽  
◽  
Aleksandr A. Chugunov ◽  
Nikita I. Petukhov ◽  
Ivan R. Indrikov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document