Finite Element Prediction of Deformation of Closed-cell Cellular Materials for Sustainable Materials Characterisation

Author(s):  
Md. Ashraful Islam ◽  
Mahadi Hasan ◽  
S. M. Mahbub Hasan ◽  
Himel Roy
2016 ◽  
Vol 20 (3) ◽  
pp. 294-301 ◽  
Author(s):  
Qian Liu ◽  
Wanchun Wang ◽  
Andrew R. Thoreson ◽  
Chunfeng Zhao ◽  
Weihong Zhu ◽  
...  

2016 ◽  
Vol 835 ◽  
pp. 649-653
Author(s):  
Yuan Yuan Ding ◽  
Shi Long Wang ◽  
Zhi Jun Zheng ◽  
Li Ming Yang ◽  
Ji Lin Yu

A 3D cell-based finite element model is employed to investigate the dynamic biaxial behavior of cellular materials under combined shear-compression. The biaxial behavior is characterized by the normal stress and shear stress, which could be determined directly from the finite element results. A crush plateau stress is introduced to illustrate the critical crush stress, and the result shows that the normal plateau stress declines with the increase of the shear plateau stress, which climbs with the increase of loading angle. An elliptical criterion of normal plateau stress vs. shear plateau stress is obtained by the nonlinear regression method.


2015 ◽  
Vol 19 (5) ◽  
pp. 563-570 ◽  
Author(s):  
Ridha Hambli ◽  
Sana Frikha ◽  
Hechmi Toumi ◽  
João Manuel R. S. Tavares

2007 ◽  
Vol 44 (5) ◽  
pp. 545-563 ◽  
Author(s):  
Tien H Wu ◽  
Steven Z Zhou ◽  
Stephan M Gale

The case history of an embankment built over soft water-treatment sludge is presented. To assure that the sludge would consolidate and gain strength as predicted, a test embankment was built. The observed performance of the test embankment was compared with the predicted performance to verify and modify design assumptions. The results were used to design and construct the full-scale embankment. The finite element method and the critical state model were used to predict the performances of the test embankment and the full-scale embankment. Bayesian updating and system identification were used to update the material properties used in the prediction for the test embankment. The updated properties were then used to update the prediction for the test embankment and to predict the performance of the full-scale embankment. These predictions were compared with the observed performances to evaluate the accuracies of the predictions with different input data. Efforts were made to identify factors that cause differences between predicted and measured performances.Key words: Bayesian updating, consolidation, finite-element prediction, shear strength, stability, water-treatment sludge.


1997 ◽  
Author(s):  
Yuzhao Song ◽  
Fu S. Chang ◽  
Paul Lipinski ◽  
Mike Paiva

Sign in / Sign up

Export Citation Format

Share Document