Multi-factor matching method for basic information of science and technology experts based on Web mining

Author(s):  
Pei Zhou ◽  
Quanyin Zhu
2021 ◽  
Vol 10 (2) ◽  
pp. 75
Author(s):  
Daoye Zhu ◽  
Chengqi Cheng ◽  
Weixin Zhai ◽  
Yihang Li ◽  
Shizhong Li ◽  
...  

Spatial object matching is one of the fundamental technologies used for updating and merging spatial data. This study focused mainly on the matching optimization of multiscale spatial polygonal objects. We proposed a granularity factor evaluation index that was developed to promote the recognition ability of complex matches in multiscale spatial polygonal object matching. Moreover, we designed the granularity factor matching model based on a backpropagation neural network (BPNN) and designed a multistage matching workflow. Our approach was validated experimentally using two topographical datasets at two different scales: 1:2000 and 1:10,000. Our results indicate that the granularity factor is effective both in improving the matching score of complex matching and reducing the occurrence of missing matching, and our matching model is suitable for multiscale spatial polygonal object matching, with a high precision and recall reach of 97.2% and 90.6%.


1962 ◽  
Vol 14 ◽  
pp. 441-444 ◽  
Author(s):  
J. E. Geake ◽  
H. Lipson ◽  
M. D. Lumb

Work has recently begun in the Physics Department of the Manchester College of Science and Technology on an attempt to simulate lunar luminescence in the laboratory. This programme is running parallel with that of our colleagues in the Manchester University Astronomy Department, who are making observations of the luminescent spectrum of the Moon itself. Our instruments are as yet only partly completed, but we will describe briefly what they are to consist of, in the hope that we may benefit from the comments of others in the same field, and arrange to co-ordinate our work with theirs.


Author(s):  
W. Bernard

In comparison to many other fields of ultrastructural research in Cell Biology, the successful exploration of genes and gene activity with the electron microscope in higher organisms is a late conquest. Nucleic acid molecules of Prokaryotes could be successfully visualized already since the early sixties, thanks to the Kleinschmidt spreading technique - and much basic information was obtained concerning the shape, length, molecular weight of viral, mitochondrial and chloroplast nucleic acid. Later, additonal methods revealed denaturation profiles, distinction between single and double strandedness and the use of heteroduplexes-led to gene mapping of relatively simple systems carried out in close connection with other methods of molecular genetics.


Sign in / Sign up

Export Citation Format

Share Document