gene activity
Recently Published Documents


TOTAL DOCUMENTS

704
(FIVE YEARS 47)

H-INDEX

75
(FIVE YEARS 5)

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Christopher R. Marks ◽  
Kathleen E. Duncan ◽  
Mark A. Nanny ◽  
Brian H. Harriman ◽  
Recep Avci ◽  
...  

AbstractNaval vessels regularly mix fuel and seawater as ballast, a practice that might exacerbate fuel biodegradation and metal biocorrosion. To investigate, a metagenomic characterization and metabolite profiling of ballast from U.S. Navy vessels with residence times of 1-, ~20-, and 31 weeks was conducted and compared with the seawater used to fill the tanks. Aerobic Gammaproteobacteria differentially proliferated in the youngest ballast tank and aerobic-specific hydrocarbon degradation genes were quantitatively more important compared to seawater or the other ballast tanks. In contrast, the anaerobic Deltaproteobacteria dominated in the eldest ballast fluid with anaerobic-specific hydrocarbon activation genes being far more prominent. Gene activity was corroborated by detection of diagnostic metabolites and corrosion was evident by elevated levels of Fe, Mn, Ni and Cu in all ballast samples relative to seawater. The findings argue that marine microbial communities rapidly shift from aerobic to anaerobic hydrocarbonoclastic-dominated assemblages that accelerate fuel and infrastructure deterioration.


Author(s):  
Gilles Defrel ◽  
Nathalie Marsaud ◽  
Etienne Rifa ◽  
Frédéric Martins ◽  
Fayza Daboussi

Efficient and reliable genome engineering technologies have yet to be developed for diatoms. The delivery of DNA in diatoms results in the random integration of multiple copies, quite often leading to heterogeneous gene activity, as well as host instability. Transgenic diatoms are generally selected on the basis of transgene expression or high enzyme activity, without consideration of the copy number or the integration locus. Here, we propose an integrated pipeline for the diatom, Phaeodactylum tricornutum, that accurately quantifies transgene activity using a β-glucuronidase assay and the number of transgene copies integrated into the genome through Droplet Digital PCR (ddPCR). An exhaustive and systematic analysis performed on 93 strains indicated that 42% of them exhibited high β-glucuronidase activity. Though most were attributed to high transgene copy numbers, we succeeded in isolating single-copy clones, as well as sequencing the integration loci. In addition to demonstrating the impact of the genomic integration site on gene activity, this study identifies integration sites for stable transgene expression in Phaeodactylum tricornutum.


Animals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2870
Author(s):  
Ransom L. Baldwin Baldwin ◽  
Mei Liu ◽  
Erin E. Connor ◽  
Timothy G. Ramsay ◽  
George E. Liu ◽  
...  

We present an analysis of transcriptomic dynamics in rumen epithelium of 18 Holstein calves during the transition from pre-rumination to rumination in cattle-fed hay or concentrated diets at weaning. Three calves each were euthanized at 14 and 42 d of age to exemplify preweaning, and six calves each were provided diets of either milk replacer and grass hay or calf starter to introduce weaning. The two distinct phases of rumen development and function in cattle are tightly regulated by a series of signaling events and clusters of effectors on critical pathways. The dietary shift from liquid to solid feeds prompted the shifting of gene activity. The number of differentially expressed genes increased significantly after weaning. Bioinformatic analysis revealed gene activity shifts underline the functional transitions in the ruminal epithelium and signify the transcriptomic reprogramming. Gene ontogeny (GO) term enrichment shows extensively activated biological functions of differentially expressed genes in the ruminal epithelium after weaning were predominant metabolic functions. The transcriptomic reprogramming signifies a correlation between gene activity and changes in metabolism and energy production in the rumen epithelium, which occur at weaning when transitioning from glucose use to VFA use by epithelium during the weaning.


2021 ◽  
Author(s):  
En-Jung Hsieh ◽  
Wendar Lin ◽  
Wolfgang Schmidt

Abstract Iron (Fe) is an essential micronutrient that plays pivotal roles as electron donor and catalyst across organisms. In plants, variable, often insufficient Fe supply necessitates mechanisms that constantly attune Fe uptake rates and recalibrate cellular Fe homeostasis. Here, we show that short-term (0.5, 6, and 12 h) exposure of Arabidopsis thaliana plants to Fe deficiency triggered massive changes in gene activity governed by transcription and alternative splicing (AS), regulatory layers that were to a large extent mutually exclusive. Such preclusion was not observed for genes that are directly involved in the acquisition of Fe, which appears to be concordantly regulated by both expression and AS. Generally, genes with lower splice site strengths and higher intron numbers were more likely to be regulated by AS, no dependence was on gene architecture was observed for transcriptionally controlled genes. Conspicuously, specific processes were associated with particular genomic features and biased towards either regulatory mode, suggesting that genomic hardwiring is functionally biased. Early changes in splicing patterns were, in many cases, congruent with later changes in transcript or protein abundance, thus contributing to the pronounced transcriptome-proteome discordance observed in plants.


2021 ◽  
Author(s):  
En-Jung Hsieh ◽  
Wedar Lin ◽  
Wolfgang Schmidt

Iron (Fe) is an essential micronutrient that plays pivotal roles as electron donor and catalyst across organisms. In plants, variable, often insufficient Fe supply necessitates mechanisms that constantly attune Fe uptake rates and recalibrate cellular Fe homeostasis. Here, we show that short-term (0.5, 6, and 12 h) exposure of Arabidopsis thaliana plants to Fe deficiency triggered massive changes in gene activity governed by transcription and alternative splicing (AS), regulatory layers that were to a large extent mutually exclusive. Such preclusion was not observed for genes that are directly involved in the acquisition of Fe, which appears to be concordantly regulated by both expression and AS. Generally, genes with lower splice site strengths and higher intron numbers were more likely to be regulated by AS, no dependence was on gene architecture was observed for transcriptionally controlled genes. Conspicuously, specific processes were associated with particular genomic features and biased towards either regulatory mode, suggesting that genomic hardwiring is functionally biased. Early changes in splicing patterns were, in many cases, congruent with later changes in transcript or protein abundance, thus contributing to the pronounced transcriptome-proteome discordance observed in plants.


2021 ◽  
Vol 118 (21) ◽  
pp. e2013230118
Author(s):  
Jia-yuan Gong ◽  
Cui-jiao Wen ◽  
Ming-liang Tang ◽  
Rui-fang Duan ◽  
Juan-nan Chen ◽  
...  

G-quadruplexes (G4s) formed by guanine-rich nucleic acids play a role in essential biological processes such as transcription and replication. Besides the >1.5 million putative G-4–forming sequences (PQSs), the human genome features >640 million single-nucleotide variations (SNVs), the most common type of genetic variation among people or populations. An SNV may alter a G4 structure when it falls within a PQS motif. To date, genome-wide PQS–SNV interactions and their impact have not been investigated. Herein, we present a study on the PQS–SNV interactions and the impact they can bring to G4 structures and, subsequently, gene expressions. Based on build 154 of the Single Nucleotide Polymorphism Database (dbSNP), we identified 5 million gains/losses or structural conversions of G4s that can be caused by the SNVs. Of these G4 variations (G4Vs), 3.4 million are within genes, resulting in an average load of >120 G4Vs per gene, preferentially enriched near the transcription start site. Moreover, >80% of the G4Vs overlap with transcription factor–binding sites and >14% with enhancers, giving an average load of 3 and 7.5 for the two regulatory elements, respectively. Our experiments show that such G4Vs can significantly influence the expression of their host genes. These results reveal genome-wide G4Vs and their impact on gene activity, emphasizing an understanding of genetic variation, from a structural perspective, of their physiological function and pathological implications. The G4Vs may also provide a unique category of drug targets for individualized therapeutics, health risk assessment, and drug development.


Author(s):  
Taha Bartu Hayal ◽  
Oğuz Kaan Kırbaş ◽  
Batuhan Turhan Bozkurt ◽  
Pakize Neslihan Taşlı ◽  
Berna Bülbül ◽  
...  

2021 ◽  
Vol 69 ◽  
pp. 41-47
Author(s):  
Inma Gonzalez ◽  
Amandine Molliex ◽  
Pablo Navarro
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document