Improved Hierarchical IR Drop Analysis in Homogeneous Circuits

Author(s):  
Chengrui Zhang ◽  
Pingqiang Zhou
Keyword(s):  
2019 ◽  
Vol 50 (S1) ◽  
pp. 985-987
Author(s):  
Junting Ouyang ◽  
Bojia Lyu ◽  
DZ Peng ◽  
Kang Yang ◽  
Xiangzi Kong ◽  
...  
Keyword(s):  

2016 ◽  
Vol 866 ◽  
pp. 14-19
Author(s):  
Jin Xia Xu ◽  
Ya Long Cao ◽  
Lin Hua Jiang ◽  
Ying Bin Song ◽  
Wei Feng

In order to evaluate more accurately the corrosion condition of reinforcing steel in chloride contaminated concrete, it is significant to investigate the error level in the linear polarization resistance measurement caused by IR drop. Concretes with eight levels of chloride ions (ranging from 0% to 2.0% by mass of cement) by adding different amounts of sodium chloride in the mixing water were prepared. Linear polarization measurements with and without IR compensation, were applied to determine the error level. Besides, half-cell potential method was employed to detect the corrosion condition of reinforcing steel. The results indicate that the error level is so low (less than 5.0%) that the IR drop can be negligible when the chloride content is relatively lower (0.6% or less by mass of cement). However, the error level is increased with the increase of chloride content. The IR drop is suggested to be compensated when the chloride content is relatively higher (more than 0.6% by mass of cement). At this time, the onset of active corrosion of reinforcing steel is also found.


2018 ◽  
Vol 20 (4) ◽  
pp. 417-429 ◽  
Author(s):  
Satyabrata Dash ◽  
Sukanta Dey ◽  
Deepak Joshi ◽  
Gaurav Trivedi

Purpose The purpose of this paper is to demonstrate the application of river formation dynamics to size the widths of power distribution network for very large-scale integration designs so that the wire area required by power rails is minimized. The area minimization problem is transformed into a single objective optimization problem subject to various design constraints, such as IR drop and electromigration constraints. Design/methodology/approach The minimization process is carried out using river formation dynamics heuristic. The random probabilistic search strategy of river formation dynamics heuristic is used to advance through stringent design requirements to minimize the wire area of an over-designed power distribution network. Findings A number of experiments are performed on several power distribution benchmarks to demonstrate the effectiveness of river formation dynamics heuristic. It is observed that the river formation dynamics heuristic outperforms other standard optimization techniques in most cases, and a power distribution network having 16 million nodes is successfully designed for optimal wire area using river formation dynamics. Originality/value Although many research works are presented in the literature to minimize wire area of power distribution network, these research works convey little idea on optimizing very large-scale power distribution networks (i.e. networks having more than four million nodes) using an automated environment. The originality in this research is the illustration of an automated environment equipped with an efficient optimization technique based on random probabilistic movement of water drops in solving very large-scale power distribution networks without sacrificing accuracy and additional computational cost. Based on the computation of river formation dynamics, the knowledge of minimum area bounded by optimum IR drop value can be of significant advantage in reduction of routable space and in system performance improvement.


Sign in / Sign up

Export Citation Format

Share Document