cell movement
Recently Published Documents


TOTAL DOCUMENTS

1429
(FIVE YEARS 101)

H-INDEX

107
(FIVE YEARS 1)

Author(s):  
Zi Wang ◽  
Yichi Xu ◽  
Dali Wang ◽  
Jiawei Yang ◽  
Zhirong Bao


2022 ◽  
Vol 12 ◽  
Author(s):  
Ying Zhai ◽  
Anirban Roy ◽  
Hao Peng ◽  
Daniel L. Mullendore ◽  
Gurpreet Kaur ◽  
...  

Croton yellow vein mosaic virus (CYVMV), a species in the genus Begomovirus, is a prolific monopartite begomovirus in the Indian sub-continent. CYVMV infects multiple crop plants to cause leaf curl disease. Plants have developed host RNA silencing mechanisms to defend the threat of viruses, including CYVMV. We characterized four RNA silencing suppressors, namely, V2, C2, and C4 encoded by CYVMV and betasatellite-encoded C1 protein (βC1) encoded by the cognate betasatellite, croton yellow vein betasatellite (CroYVMB). Their silencing suppressor functions were verified by the ability of restoring the β-glucuronidase (GUS) activity suppressed by RNA silencing. We showed here for the first time that V2 was capable of self-interacting, as well as interacting with the V1 protein, and could be translocalized to the plasmodesmata in the presence of CYVMV. The knockout of either V2 or V1 impaired the intercellular mobility of CYVMV, indicating their novel coordinated roles in the cell-to-cell movement of the virus. As pathogenicity determinants, each of V2, C2, and C4 could induce typical leaf curl symptoms in Nicotiana benthamiana plants even under transient expression. Interestingly, the transcripts and proteins of all four suppressors could be detected in the systemically infected leaves with no correlation to symptom induction. Overall, our work identifies four silencing suppressors encoded by CYVMV and its cognate betasatellite and reveals their subcellular localizations, interaction behavior, and roles in symptom induction and intercellular virus movement.



2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Hubin Yin ◽  
Chen Zhang ◽  
Zongjie Wei ◽  
Weiyang He ◽  
Ning Xu ◽  
...  

AbstractBladder cancer is a highly heterogeneous and aggressive malignancy with a poor prognosis. EGF/EGFR activation causes the detachment of SHC-binding protein 1 (SHCBP1) from SHC adapter protein 1 (SHC1), which subsequently translocates into the nucleus and promotes cancer development via multiple signaling pathways. However, the role of the EGF-SHCBP1 axis in bladder cancer progression remains unexplored. Herein, we report that SHCBP1 is upregulated in bladder cancer tissues and cells, with cytoplasmic or nuclear localization. Released SHCBP1 responds to EGF stimulation by translocating into the nucleus following Ser273 phosphorylation. Depletion of SHCBP1 reduces EGF-induced cell migration and invasiveness of bladder cancer cells. Mechanistically, SHCBP1 binds to RACGAP1 via its N-terminal domain of amino acids 1 ~ 428, and this interaction is enhanced following EGF treatment. Furthermore, SHCBP1 facilitates cell migration by inhibiting RACGAP-mediated GTP-RAC1 inactivation, whose activity is indispensable for cell movement. Collectively, we demonstrate that the EGF-SHCBP1-RACGAP1-RAC1 axis acts as a novel regulatory mechanism of bladder cancer progression, which offers a new clinical therapeutic strategy to combat bladder cancer.



2021 ◽  
Author(s):  
MoonSun Jung ◽  
Joanna Skhinas ◽  
Eric Y Du ◽  
Maria Kristine Tolentino ◽  
Robert Utama ◽  
...  

Understanding the underlying mechanisms of migration and metastasis is a key focus of cancer research. There is an urgent need to develop in vitro 3D tumor models that can mimic physiological cell-cell and cell-extracellular matrix interactions, with high reproducibility and that are suitable for high throughput (HTP) drug screening. Here, we developed a HTP 3D bioprinted migration model using a bespoke drop-on-demand bioprinting platform. This HTP platform coupled with tunable hydrogel systems enables (i) the rapid encapsulation of cancer cells within in vivo tumor mimicking matrices, (ii) in situ and real-time measurement of cell movement, (iii) detailed molecular analysis for the study of mechanisms underlying cell migration and invasion, and (iv) the identification of novel therapeutic options. This work demonstrates that this HTP 3D bioprinted cell migration platform has broad applications across quantitative cell and cancer biology as well as drug screening.



Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 51
Author(s):  
Zhipeng Huang ◽  
Haishan Huang ◽  
Runming Shi ◽  
Xu Li ◽  
Xuan Zhang ◽  
...  

With several divided stages, placement and routing are the most critical and challenging steps in VLSI physical design. To ensure that physical implementation problems can be manageable and converged in a reasonable runtime, placement/routing problems are usually further split into several sub-problems, which may cause conservative margin reservation and mis-correlation. Therefore, it is desirable to design an algorithm that can accurately and efficiently consider placement and routing simultaneously. In this paper, we propose a detailed placement and global routing co-optimization algorithm while considering complex routing constraints to avoid conservative margin reservation and mis-correlation in placement/routing stages. Firstly, we present a rapidly preprocessing technology based on R-tree to improve the initial routing results. After that, a BFS-based approximate optimal addressing algorithm in 3D is designed to find a proper destination for cell movement. We propose an optimal region selection algorithm based on the partial routing solution to jump out of the local optimal solution. Further, a fast partial net rip-up and rerouted algorithm is used in the process of cell movement. Finally, we adopt an efficient refinement technique to reduce the routing length further. Compared with the top 3 winners according to the 2020 ICCAD CAD contest benchmarks, the experimental results show that our algorithm achieves the best routing length reduction for all cases with a shorter runtime. On average, our algorithm can improve 0.7%, 1.5%, and 1.7% for the first, second, and third place, respectively. In addition, we can still obtain the best results after relaxing the maximum cell movement constraint, which further illustrates the effectiveness of our algorithm.



Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 44
Author(s):  
Jaeho Yoon ◽  
Vijay Kumar ◽  
Ravi Shankar Goutam ◽  
Sung-Chan Kim ◽  
Soochul Park ◽  
...  

Gastrulation is a critical step in the establishment of a basic body plan during development. Convergence and extension (CE) cell movements organize germ layers during gastrulation. Noncanonical Wnt signaling has been known as major signaling that regulates CE cell movement by activating Rho and Rac. In addition, Bmp molecules are expressed in the ventral side of a developing embryo, and the ventral mesoderm region undergoes minimal CE cell movement while the dorsal mesoderm undergoes dynamic cell movements. This suggests that Bmp signal gradient may affect CE cell movement. To investigate whether Bmp signaling negatively regulates CE cell movements, we performed microarray-based screening and found that the transcription of Xenopus Arhgef3.2 (Rho guanine nucleotide exchange factor) was negatively regulated by Bmp signaling. We also showed that overexpression or knockdown of Xarhgef3.2 caused gastrulation defects. Interestingly, Xarhgef3.2 controlled gastrulation cell movements through interacting with Disheveled (Dsh2) and Dsh2-associated activator of morphogenesis 1 (Daam1). Our results suggest that Bmp gradient affects gastrulation cell movement (CE) via negative regulation of Xarhgef3.2 expression.



Pathogens ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 3
Author(s):  
Irshad Sharafutdinov ◽  
Jakob Knorr ◽  
Delara Soltan Esmaeili ◽  
Steffen Backert ◽  
Nicole Tegtmeyer

Cortactin is an actin-binding protein and actin-nucleation promoting factor regulating cytoskeletal rearrangements in eukaryotes. Helicobacter pylori is a gastric pathogen that exploits cortactin to its own benefit. During infection of gastric epithelial cells, H. pylori hijacks multiple cellular signaling pathways, leading to the disruption of key cell functions. Two bacterial virulence factors play important roles in this scenario, the vacuolating cytotoxin VacA and the translocated effector protein CagA of the cag type IV secretion system (T4SS). Specifically, by overruling the phosphorylation status of cortactin, H. pylori alternates the activity of molecular interaction partners of this important protein, thereby manipulating the performance of cytoskeletal rearrangements, endosomal trafficking and cell movement. Based on shRNA knockdown and other studies, it was previously reported that VacA utilizes cortactin for its cellular uptake, intracellular travel and induction of apoptosis by a mitochondria-dependent mechanism, while CagA induces cell scattering, motility and elongation. To investigate the role of cortactin in these phenotypes in more detail, we produced a complete knockout mutant of cortactin in the gastric adenocarcinoma cell line AGS by CRISPR-Cas9. These cells were infected with H. pylori wild-type or various isogenic mutant strains. Unexpectedly, cortactin deficiency did not prevent the uptake and formation of VacA-dependent vacuoles, nor the induction of apoptosis by internalized VacA, while the induction of T4SS- and CagA-dependent AGS cell movement and elongation were strongly reduced. Thus, we provide evidence that cortactin is required for the function of internalized CagA, but not VacA.



2021 ◽  
Vol 12 ◽  
Author(s):  
Amena Alsakran ◽  
Tetsuhiro Kudoh

In this review, we will discuss zebrafish as a model for studying mechanisms of human fetal alcohol spectrum disorders (FASDs). We will overview the studies on FASDs so far and will discuss with specific focus on the mechanisms by which alcohol alters cell migration during the early embryogenesis including blastula, gastrula, and organogenesis stages which later cause morphological defects in the brain and other tissues. FASDs are caused by an elevated alcohol level in the pregnant mother’s body. The symptoms of FASDs include microcephaly, holoprosencephaly, craniofacial abnormalities, and cardiac defects with birth defect in severe cases, and in milder cases, the symptoms lead to developmental and learning disabilities. The transparent zebrafish embryo offers an ideal model system to investigate the genetic, cellular, and organismal responses to alcohol. In the zebrafish, the effects of alcohol were observed in many places during the embryo development from the stem cell gene expression at the blastula/gastrula stage, gastrulation cell movement, morphogenesis of the central nervous system, and neuronal development. The data revealed that ethanol suppresses convergence, extension, and epiboly cell movement at the gastrula stage and cause the failure of normal neural plate formation. Subsequently, other cell movements including neurulation, eye field morphogenesis, and neural crest migration are also suppressed, leading to the malformation of the brain and spinal cord, including microcephaly, cyclopia, spinal bifida, and craniofacial abnormalities. The testing cell migration in zebrafish would provide convenient biomarkers for the toxicity of alcohol and other related chemicals, and investigate the molecular link between the target signaling pathways, following brain development.



2021 ◽  
Author(s):  
Peng Zou ◽  
Zhifeng Lin ◽  
Chenyue Ma ◽  
Jun Yu ◽  
Jianli Chen
Keyword(s):  


2021 ◽  
Vol 2 (4) ◽  
pp. 100928
Author(s):  
Alexandre Chuyen ◽  
Fabrice Daian ◽  
Andrea Pasini ◽  
Laurent Kodjabachian


Sign in / Sign up

Export Citation Format

Share Document