Functionality emergence of single molecule electronics

Author(s):  
Takuji Ogawa ◽  
Murni Handayani ◽  
Tomoko Inose ◽  
Takashi Tamaki ◽  
Minoru Fukumori ◽  
...  
Nanoscale ◽  
2014 ◽  
Vol 6 (12) ◽  
pp. 6953-6958 ◽  
Author(s):  
Y. J. Dappe ◽  
C. González ◽  
J. C. Cuevas

We present anab initiostudy of the use of carbon-based tips as electrodes in single-molecule junctions. We show that carbon tips can be combined with other carbon nanostructures to form all-carbon molecular junctions with molecules like benzene or C60. Results show that the use of carbon tips can lead to conductive molecular junctions and open new perspectives in all-carbon molecular electronics.


2015 ◽  
Vol 6 ◽  
pp. 1558-1567 ◽  
Author(s):  
Riccardo Frisenda ◽  
Simge Tarkuç ◽  
Elena Galán ◽  
Mickael L Perrin ◽  
Rienk Eelkema ◽  
...  

We report on an experimental investigation of transport through single molecules, trapped between two gold nano-electrodes fabricated with the mechanically controlled break junction (MCBJ) technique. The four molecules studied share the same core structure, namely oligo(phenylene ethynylene) (OPE3), while having different aurophilic anchoring groups: thiol (SAc), methyl sulfide (SMe), pyridyl (Py) and amine (NH2). The focus of this paper is on the combined characterization of the electrical and mechanical properties determined by the anchoring groups. From conductance histograms we find that thiol anchored molecules provide the highest conductance; a single-level model fit to current–voltage characteristics suggests that SAc groups exhibit a higher electronic coupling to the electrodes, together with better level alignment than the other three groups. An analysis of the mechanical stability, recording the lifetime in a self-breaking method, shows that Py and SAc yield the most stable junctions while SMe form short-lived junctions. Density functional theory combined with non-equlibrium Green’s function calculations help in elucidating the experimental findings.


nano Online ◽  
2016 ◽  
Author(s):  
Riccardo Frisenda ◽  
Simge Tarkuç ◽  
Elena Galán ◽  
Mickael Perrin ◽  
Rienk Eelkema ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document