scanning tunneling microscope
Recently Published Documents


TOTAL DOCUMENTS

2425
(FIVE YEARS 29)

H-INDEX

101
(FIVE YEARS 1)

2022 ◽  
Vol 93 (1) ◽  
pp. 013702
Author(s):  
Arthur Leis ◽  
Vasily Cherepanov ◽  
Bert Voigtländer ◽  
F. Stefan Tautz


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 137
Author(s):  
Lina Shang ◽  
Faming Kang ◽  
Wenze Gao ◽  
Zheng Zhou ◽  
Wei Xu

The on-surface synthesis of carbon nanostructures has attracted tremendous attention owing to their unique properties and numerous applications in various fields. With the extensive development of scanning tunneling microscope (STM) and noncontact atomic force microscope (nc-AFM), the on-surface fabricated nanostructures so far can be characterized on atomic and even single-bond level. Therefore, various novel low-dimensional carbon nanostructures, challenging to traditional solution chemistry, have been widely studied on surfaces, such as polycyclic aromatic hydrocarbons, graphene nanoribbons, nanoporous graphene, and graphyne/graphdiyne-like nanostructures. In particular, nanostructures containing sp-hybridized carbons are of great advantage for their structural linearity and small steric demands as well as intriguing electronic and mechanical properties. Herein, the recent developments of low-dimensional sp-carbon nanostructures fabricated on surfaces will be summarized and discussed.



2021 ◽  
Vol 118 (51) ◽  
pp. e2115317118
Author(s):  
Siyuan Wan ◽  
Huazhou Li ◽  
Peayush Choubey ◽  
Qiangqiang Gu ◽  
Han Li ◽  
...  

In cuprate superconductors, due to strong electronic correlations, there are multiple intertwined orders which either coexist or compete with superconductivity. Among them, the antiferromagnetic (AF) order is the most prominent one. In the region where superconductivity sets in, the long-range AF order is destroyed. Yet the residual short-range AF spin fluctuations are present up to a much higher doping, and their role in the emergence of the superconducting phase is still highly debated. Here, by using a spin-polarized scanning tunneling microscope, we directly visualize an emergent incommensurate AF order in the nearby region of Fe impurities embedded in the optimally doped Bi2Sr2CaCu2O8+δ (Bi2212). Remarkably, the Fe impurities suppress the superconducting coherence peaks with the gapped feature intact, but pin down the ubiquitous short-range incommensurate AF order. Our work shows an intimate relation between antiferromagnetism and superconductivity.





2021 ◽  
Author(s):  
Mark Aarts ◽  
Alain Reiser ◽  
Ralph Spolenak ◽  
Esther Alarcon-Llado

Regulating the state of the solid-liquid interface by means of electric fields is a powerful tool to control electrochemistry. In scanning probe systems, this can be confined closely to a scanning (nano)electrode by means of fast potential pulses, providing a way to probe the interface and control electrochemical reactions locally, as has been demonstrated in nanoscale electrochemical etching. For this purpose, it is important to know the spatial extent of the interaction between pulses applied to the tip, and the substrate. In this paper we use a framework of diffuse layer charging to describe the localization of electrical double layer charging in response to a potential pulse at the probe. Our findings are in good agreement to literature values obtained in electrochemical etching. We show that the pulse can be much more localized by limiting the diffusivity of the ions present in solution, by confined electrodeposition of cobalt in a dimethyl sulfoxide solution, using an electrochemical scanning tunneling microscope. Finally, we demonstrate the deposition of cobalt nanostructures (<100 nm) using this method. The presented framework therefore provides a general route for predicting and controlling the time-dependent region of interaction between an electrochemical scanning probe and the surface.



2021 ◽  
Vol 92 (10) ◽  
pp. 103702
Author(s):  
Jiahao Yan ◽  
Jiajun Ma ◽  
Aiwei Wang ◽  
Ruisong Ma ◽  
Liangmei Wu ◽  
...  


2021 ◽  
Vol 104 (8) ◽  
Author(s):  
Baruch Horovitz ◽  
Carsten Henkel


Sign in / Sign up

Export Citation Format

Share Document