molecular electronics
Recently Published Documents


TOTAL DOCUMENTS

990
(FIVE YEARS 110)

H-INDEX

73
(FIVE YEARS 6)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 500
Author(s):  
Pablo Álvarez-Rodríguez ◽  
Víctor Manuel García-Suárez

Graphene stands out as a versatile material with several uses in fields that range from electronics to biology. In particular, graphene has been proposed as an electrode in molecular electronics devices that are expected to be more stable and reproducible than typical ones based on metallic electrodes. In this work, we study by means of first principles, simulations and a tight-binding model the electronic and transport properties of graphene nanogaps with straight edges and different passivating atoms: Hydrogen or elements of the second row of the periodic table (boron, carbon, nitrogen, oxygen, and fluoride). We use the tight-binding model to reproduce the main ab-initio results and elucidate the physics behind the transport properties. We observe clear patterns that emerge in the conductance and the current as one moves from boron to fluoride. In particular, we find that the conductance decreases and the tunneling decaying factor increases from the former to the latter. We explain these trends in terms of the size of the atom and its onsite energy. We also find a similar pattern for the current, which is ohmic and smooth in general. However, when the size of the simulation cell is the smallest one along the direction perpendicular to the transport direction, we obtain highly non-linear behavior with negative differential resistance. This interesting and surprising behavior can be explained by taking into account the presence of Fano resonances and other interference effects, which emerge due to couplings to side atoms at the edges and other couplings across the gap. Such features enter the bias window as the bias increases and strongly affect the current, giving rise to the non-linear evolution. As a whole, these results can be used as a template to understand the transport properties of straight graphene nanogaps and similar systems and distinguish the presence of different elements in the junction.


Author(s):  
Nina Sadlej-Sosnowska ◽  
Agnieszka Ocios-Bębenek ◽  
Jan Cz. Dobrowolski ◽  
Dariusz Boczar

AbstractCumulenes and polyynes have the potential to be applied as linear, sp-hybridized, one-dimensional all-carbon nanowires in molecular electronics and optoelectronics. The delocalization and conductivity descriptors of the two π-conjugated systems, heterodisubstituted with the NO2, CN, NH2, and OH groups, were studied using the B3LYP, B3LYP/D3, CAM-B3LYP, and ωB97XD DFT functionals, combined with the aug-cc-pVTZ basis set. Three independent types of molecular descriptors, based on geometry (the HOMA index), electrical properties (trace of the polarizability tensor), and energetic (the HOMO-LUMO energy gap) were shown to be mutually correlated and provided concordant indication that communication through the cumulene chain was considerably better than through the polyyne one. The communication can be tuned by using substituents of significantly different π-electron donor-acceptor properties as well as by the external electric field directed along the carbon chain.


2021 ◽  
Author(s):  
Saman Naghibi ◽  
Sara Sangtarash ◽  
Varshini J. Kumar ◽  
Jian-Zhong Wu ◽  
Martyna M. Judd ◽  
...  

The integration of radical (open-shell) species into single-molecule junctions at non-cryogenic temperatures is a key to unlocking the potential of molecular electronics in further applications. While many efforts have been devoted to this issue, in the absence of a chemical or electrochemical potential the open-shell character is lost when in contact with the metallic electrodes. Here, the organic 6-oxo-verdazyl radical, which is stable at ambient temperatures and atmosphere, has been functionalised by aurophilic 4-thioanisole groups at the 1,5-positions and fabricated into a molecular junction using the scanning tunnelling microscope break-junction technique. The verdazyl moiety retains open-shell character within the junction even at room temperature, and electrochemical gating permits in-situ reduction of the verdazyl to the closed-shell anionic state in a single-molecule transistor configuration. In addition, the bias-dependent alignment of the open-shell resonances with respect to the electrode Fermi levels gives rise to purely electronically-driven rectifying behaviour. The demonstration of a verdazyl-based molecular junction capable of integrating radical character, transistor-like switching behaviour, and rectification in a single molecular component under ambient conditions paves the way for further studies of the electronic, magnetic, and thermoelectric properties of open-shell species.


2021 ◽  
Vol 19 (10) ◽  
pp. 77-81
Author(s):  
Khalid Jabbar Mutashar ◽  
Jabir Shaker Hameed ◽  
Hamid Ibrahim Abbood

Current study deals with electronic properties and absorption spectrum calculations for a single molecule. The calculations were done based on the theory of density function DF. Our result showed the large basis sets 6-31G (d, P) with functional B3LYP is a suitable using for the relaxation of the studied structure. We showed a single molecule has small value of energy gap; it takes place in a wide range of molecular electronics as semiconductor material. The molecule is a soft molecule and can an electron to be transfer easily from valence band to conduction band. A single molecule can be interacting with the surrounding species due to it is higher electrophilic index. There is no direct transition from valence to conduction for a single molecule, the transition is recorded from sublevel in valence band to conduction band.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Takanori Harashima ◽  
Shintaro Fujii ◽  
Yuki Jono ◽  
Tsuyoshi Terakawa ◽  
Noriyuki Kurita ◽  
...  

AbstractThe electrical properties of DNA have been extensively investigated within the field of molecular electronics. Previous studies on this topic primarily focused on the transport phenomena in the static structure at thermodynamic equilibria. Consequently, the properties of higher-order structures of DNA and their structural changes associated with the design of single-molecule electronic devices have not been fully studied so far. This stems from the limitation that only extremely short DNA is available for electrical measurements, since the single-molecule conductance decreases sharply with the increase in the molecular length. Here, we report a DNA zipper configuration to form a single-molecule junction. The duplex is accommodated in a nanogap between metal electrodes in a configuration where the duplex is perpendicular to the nanogap axis. Electrical measurements reveal that the single-molecule junction of the 90-mer DNA zipper exhibits high conductance due to the delocalized π system. Moreover, we find an attractive self-restoring capability that the single-molecule junction can be repeatedly formed without full structural breakdown even after electrical failure. The DNA zipping strategy presented here provides a basis for novel designs of single-molecule junctions.


2021 ◽  
Author(s):  
Esmaeil Farajpour Bonab ◽  
Adam Jaros ◽  
Zahra Badri ◽  
Lucie Tučková ◽  
Michal Straka ◽  
...  

Here, we propose and provide in silico proof of concept of a spinristor; a new molecular electronic component that combines a spin-filter, a rectifier, and a switch, in a single molecule for in-memory processing. It builds on the idea of an open-shell transition metal ion enclosed within an elliptical fullerene connected to the source, drain, and a pair of gate electrodes. The spin- and electronic polarization due to the enclosed metal leads to differential rectification of the electrons at low voltages applied between the source-drain electrodes, VSD. The position of the encapsulated ion can be switched by a combination of a high VSD and a voltage applied between gate electrodes, VG, to switch the direction of the rectification and spin-filtering ratio. The system can thus be used as a switching rectifier and spin-filter, a spinristor. To the best of our knowledge, such a system has no macroscopic counterpart in electronics.


2021 ◽  
Author(s):  
Daisuke Sakamaki ◽  
Shunya Tanaka ◽  
Katsuki Tanaka ◽  
Mayu Takino ◽  
Masayuki Gon ◽  
...  

Heterohelicenes are potential materials in molecular electronics and optics because of their inherent chirality and various electronic properties originating from the introduced heteroatoms. In this work, we comprehensively investigated two kinds of double NO-hetero[5]helicenes composed of 12H-benzo[b]phenoxazine (BPO) and 13H-dibenzo[b,i]phenoxazine (DBPO). These helicenes exhibit good electron donor property reflecting the electron-rich character of their monomers and were demonstrated to work as p-type semiconductors. The enantiomers of these helicenes show the largest class of dissymmetry factors for circularly polarized luminescence (CPL) (|gCPL| > 10−2) among the previously reported helicenes. Interestingly, the signs of CPL are opposite between BPO- and DBPO-double helicenes of the same helicity. The origin of the large gCPL values and the inversion of the CPL signs was addressed by analysis of the transition electronic dipole moments (TEDM) and transition magnetic dipole moments (TMDM) based on the TD-DFT calculations.


2021 ◽  
Author(s):  
Qigang Zhong ◽  
Alexander Ihle ◽  
Sebastian Ahles ◽  
Hermann A. Wegner ◽  
Andre Schirmeisen ◽  
...  

AbstractConstructing low-dimensional covalent assemblies with tailored size and connectivity is challenging yet often key for applications in molecular electronics where optical and electronic properties of the quantum materials are highly structure dependent. We present a versatile approach for building such structures block by block on bilayer sodium chloride (NaCl) films on Cu(111) with the tip of an atomic force microscope, while tracking the structural changes with single-bond resolution. Covalent homo-dimers in cis and trans configurations and homo-/hetero-trimers were selectively synthesized by a sequence of dehalogenation, translational manipulation and intermolecular coupling of halogenated precursors. Further demonstrations of structural build-up include complex bonding motifs, like carbon–iodine–carbon bonds and fused carbon pentagons. This work paves the way for synthesizing elusive covalent nanoarchitectures, studying structural modifications and revealing pathways of intermolecular reactions.


Sign in / Sign up

Export Citation Format

Share Document