Multivariate Time Series Prediction by Neural Network Combining SVD

Author(s):  
Min Han ◽  
Mingning Fan ◽  
Zhiwei Shi
Electronics ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 876 ◽  
Author(s):  
Renzhuo Wan ◽  
Shuping Mei ◽  
Jun Wang ◽  
Min Liu ◽  
Fan Yang

Multivariable time series prediction has been widely studied in power energy, aerology, meteorology, finance, transportation, etc. Traditional modeling methods have complex patterns and are inefficient to capture long-term multivariate dependencies of data for desired forecasting accuracy. To address such concerns, various deep learning models based on Recurrent Neural Network (RNN) and Convolutional Neural Network (CNN) methods are proposed. To improve the prediction accuracy and minimize the multivariate time series data dependence for aperiodic data, in this article, Beijing PM2.5 and ISO-NE Dataset are analyzed by a novel Multivariate Temporal Convolution Network (M-TCN) model. In this model, multi-variable time series prediction is constructed as a sequence-to-sequence scenario for non-periodic datasets. The multichannel residual blocks in parallel with asymmetric structure based on deep convolution neural network is proposed. The results are compared with rich competitive algorithms of long short term memory (LSTM), convolutional LSTM (ConvLSTM), Temporal Convolution Network (TCN) and Multivariate Attention LSTM-FCN (MALSTM-FCN), which indicate significant improvement of prediction accuracy, robust and generalization of our model.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jin Fan ◽  
Yipan Huang ◽  
Ke Zhang ◽  
Sen Wang ◽  
Jinhua Chen ◽  
...  

Multivariate time series prediction is a very important task, which plays a huge role in climate, economy, and other fields. We usually use an Attention-based Encoder-Decoder network to deal with multivariate time series prediction because the attention mechanism makes it easier for the model to focus on the really important attributes. However, the Encoder-Decoder network has the problem that the longer the length of the sequence is, the worse the prediction accuracy is, which means that the Encoder-Decoder network cannot process long series and therefore cannot obtain detailed historical information. In this paper, we propose a dual-window deep neural network (DWNet) to predict time series. The dual-window mechanism allows the model to mine multigranularity dependencies of time series, such as local information obtained from a short sequence and global information obtained from a long sequence. Our model outperforms nine baseline methods in four different datasets.


Author(s):  
Muhammad Faheem Mushtaq ◽  
Urooj Akram ◽  
Muhammad Aamir ◽  
Haseeb Ali ◽  
Muhammad Zulqarnain

It is important to predict a time series because many problems that are related to prediction such as health prediction problem, climate change prediction problem and weather prediction problem include a time component. To solve the time series prediction problem various techniques have been developed over many years to enhance the accuracy of forecasting. This paper presents a review of the prediction of physical time series applications using the neural network models. Neural Networks (NN) have appeared as an effective tool for forecasting of time series.  Moreover, to resolve the problems related to time series data, there is a need of network with single layer trainable weights that is Higher Order Neural Network (HONN) which can perform nonlinearity mapping of input-output. So, the developers are focusing on HONN that has been recently considered to develop the input representation spaces broadly. The HONN model has the ability of functional mapping which determined through some time series problems and it shows the more benefits as compared to conventional Artificial Neural Networks (ANN). The goal of this research is to present the reader awareness about HONN for physical time series prediction, to highlight some benefits and challenges using HONN.


Sign in / Sign up

Export Citation Format

Share Document