Solving Nurse Scheduling Problem by Integer-Programming-Based Local Search

Author(s):  
Seiya Hasegawa ◽  
Yukio Kosugi
2012 ◽  
Vol 3 (3) ◽  
pp. 1-16 ◽  
Author(s):  
Makoto Ohki

This paper proposes an effective mutation operator for Cooperative Genetic Algorithm (CGA) to be applied to a practical Nurse Scheduling Problem (NSP). NSP is a complex combinatorial optimizing problem for which many requirements must be considered. The changes of the shift schedule yields various problems, for example, a drop in the nursing level. The author describes a technique of the reoptimization of the nurse schedule in response to a change. CGA well suits local search, but its failure to handle global search leads to inferior solutions. CGA is superior in ability for local search by means of its crossover operator, but often stagnates at the global search. To solve this problem, a mutation operator activated is proposed depending on the optimization speed. This mutation yields small changes in the population depending on the optimization speed. Then the population is able to escape from a local minimum area by means of the mutation. However, this mutation operator is composed of two well-defined parameters. This means that users have to consider the value of the parameters carefully. To solve this problem, a periodic mutation operator is proposed which has only one parameter to define itself. This simplified mutation operator is effective over a wide range of the parameter value.


2018 ◽  
Vol 24 (1) ◽  
pp. 608-612 ◽  
Author(s):  
Jin Kim ◽  
Wooram Jeon ◽  
Young-Woong Ko ◽  
Saangyong Uhmn ◽  
Dong-Hoi Kim

Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 219
Author(s):  
Xiang Tian ◽  
Xiyu Liu

In real industrial engineering, job shop scheduling problem (JSSP) is considered to be one of the most difficult and tricky non-deterministic polynomial-time (NP)-hard problems. This study proposes a new hybrid heuristic algorithm for solving JSSP inspired by the tissue-like membrane system. The framework of the proposed algorithm incorporates improved genetic algorithms (GA), modified rumor particle swarm optimization (PSO), and fine-grained local search methods (LSM). To effectively alleviate the premature convergence of GA, the improved GA uses adaptive crossover and mutation probabilities. Taking into account the improvement of the diversity of the population, the rumor PSO is discretized to interactively optimize the population. In addition, a local search operator incorporating critical path recognition is designed to enhance the local search ability of the population. Experiment with 24 benchmark instances show that the proposed algorithm outperforms other latest comparative algorithms, and hybrid optimization strategies that complement each other in performance can better break through the original limitations of the single meta-heuristic method.


Sign in / Sign up

Export Citation Format

Share Document