Ensemble of artificial neural network based land cover classifiers using satellite data

Author(s):  
Kenneth J. Mackin ◽  
Takashi Yamaguchi ◽  
Eiji Nunohiro ◽  
Jong Geol Park ◽  
Keitaro Hara ◽  
...  
2021 ◽  
Vol 28 (3) ◽  
pp. 429-447
Author(s):  
Mir Mehrdad Mirsanjari ◽  
Jurate Suziedelyte Visockiene ◽  
Fatemeh Mohammadyari ◽  
Ardavan Zarandian

Abstract The present study aimed to analyse changes in the land cover of Vilnius city and its surrounding areas and propose a scenario for their future changes using an Artificial Neural Network. The land cover dynamics modelling was based on a multilayer perceptron neural network. Landscape metrics at a class and landscape level were evaluated to determine the amount of changes in the land uses. As the results showed, the Built-up area class increased, while the forest (Semi forest and Dense forest) classes decreased during the period from 1999 to 2019. The predicted scenario showed a considerable increase of about 60 % in the Built-up area until 2039. The vegetation plant areas consist about 47 % of all the area in 2019, but it will be 36 % in 2039, if this trend (urban expansion) continues in the further. The findings further indicated the major urban expansion in the vegetation areas. However, Built-up area would expand over Semi forest land and Dense forest land, with a large part of them changed into built- up areas.


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1953 ◽  
Author(s):  
Seo ◽  
Lee

Drought is a complex phenomenon caused by lack of precipitation that affects water resources and human society. Groundwater drought is difficult to assess due to its complexity and the lack of spatio-temporal groundwater observations. In this study, we present an approach to evaluate groundwater drought based on relatively high spatial resolution groundwater storage change data. We developed an artificial neural network (ANN) that employed satellite data (Gravity Recovery and Climate Experiment (GRACE) and Tropical Rainfall Measuring Mission (TRMM)) as well as Global Land Data Assimilation System (GLDAS) models. The Standardized Groundwater Level Index (SGI) was calculated by normalizing ANN-predicted groundwater storage changes from 2003 to 2015 across South Korea. The ANN-predicted 25 km groundwater storage changes correlated well with both the in situ and the water balance equation (WBE)-estimated groundwater storage changes, with mean correlation coefficients of 0.87 and 0.64, respectively. The Standardized Precipitation–Evapotranspiration Index (SPEI), having an accumulation time of 1–6 months, and the Palmer Drought Severity Index (PDSI) were used to validate the SGI. The results showed that the SGI had a pattern similar to that of SPEI-1 and SPEI-2 (1- and 2-month accumulation periods, respectively), and PDSI. However, the SGI performance fluctuated slightly due to its relatively short study period (13 years) as compared to SPEI and PDSI (more than 30 years). The SGI, which was developed using a new approach in this study, captured the characteristics of groundwater drought, thus presenting a framework for the assessment of these characteristics.


2009 ◽  
Vol 13 (2) ◽  
pp. 570-574 ◽  
Author(s):  
Takashi Yamaguchi ◽  
Kenneth J. Mackin ◽  
Eiji Nunohiro ◽  
Jong Geol Park ◽  
Keitaro Hara ◽  
...  

Author(s):  
Fatwa Ramdani ◽  
Budi Setiawan ◽  
Alfi Rusydi ◽  
Muhammad Furqon

Great Malang region is developing rapidly with the population increase and inhabitant`s activity, like migration and urbanization. Other activities like agricultural expansion as well as an uncontrolled residential development need to be monitored to avoid any negative impact in the future. The availability of free and open-source software, spatial high-resolution satellite imagery datasets, and powerful algorithms open the possibilities to map, monitor, and predict the future trend of land use land cover (LULC) changes. However, the accuracy and precision of this model is still in doubt, especially in the Great Malang region. Research is needed to provide a foundational basis and documentation on how the changes occur, where did the changes occur, and the accuracy of the predicted model. This study tries to answer those questions using the high spatial resolution of Sentinel-2 imageries. Combination of the fuzzy algorithm, artificial neural network, and cellular automata was utilized to process the datasets. We analysed four different scenarios of simulation and the result then compared. The different number of hidden layers and iteration was used and evaluated to understand the effect of different parameters in the prediction result. The best scenario was then used to predict future land use changes. This study has successfully produced the future LULC model of Great Malang region with high accuracy level (87%). The study also found that the land use transformation from agriculture to urban built-up area is relatively low, where changes of the built-up area over three periods of analysis are below than 5%. This is due to the physical condition of Great Malang region where mountainous areas are dominated.


Sign in / Sign up

Export Citation Format

Share Document