Collaborative path planning for multiple Unmanned Aerial Vehicles in dynamic environments

Author(s):  
Durdana Habib ◽  
Shoab A. Khan ◽  
Habibullah Jamal
2014 ◽  
Vol 668-669 ◽  
pp. 388-393 ◽  
Author(s):  
Xiao Ming Cheng ◽  
Dong Cao ◽  
Chun Tao Li

As an important part of cooperative control for multiple unmanned aerial vehicles (UAVs), cooperative path planning can get optimal flight path which can satisfy different constraints. Research on cooperative path planning for multiple UAVs is summarized in this paper. Firstly, problem description and constraints are given. Then, solution frameworks and path coordination approaches are summarized. After that, several control methods commonly used in formation of multiple UAVs are introduced respectively. Lastly, possible research directions in the future time are put forward.


2021 ◽  
Author(s):  
Yang Chen ◽  
Dechang Pi ◽  
Bi Wang ◽  
Ali Wagdy Mohamed ◽  
Junfu Chen

Abstract Multiple Unmanned Aerial Vehicles (UAVs) path planning is the benchmark problem of multiple UAVs application, which belongs to the non-deterministic polynomial problem. Its objective is to require multiple UAVs flying safely to the goal position according to their specific start position in three-dimensional space. This issue can be defined as a high-dimensional optimization problem, the solution of which requires optimization techniques with global optimization capabilities. Equilibrium optimizer (EO) is a population-based meta-heuristic algorithm. In order to improve the optimization ability of EO to solve high dimensional problems, this paper proposes a modified equilibrium optimizer with generalized opposition-based learning (MGOEO), which improves the population activity by increasing the internal mutation and cross of the population. In addition, the generalized opposition-based learning is used to construct the population, which can effectively ensure that the algorithm has ability to jump out of the limitation of local optimal. Firstly, numerical experiments show that MGOEO has better optimization precision than EO and several other swarm intelligent algorithms. Then, the paths of UAVs are simulated in three different obstacle environments. The simulation results show that MGOEO can obtain safe and smooth paths, which are better than EO and other eight state-of-the-art optimization algorithms.


2016 ◽  
Vol 66 (6) ◽  
pp. 651 ◽  
Author(s):  
Halil Cicibas ◽  
Kadir Alpaslan Demir ◽  
Nafiz Arica

<p>This research compares 3D versus 4D (three spatial dimensions and the time dimension) multi-objective and multi-criteria path-planning for unmanned aerial vehicles in complex dynamic environments. In this study, we empirically analyse the performances of 3D and 4D path planning approaches. Using the empirical data, we show that the 4D approach is superior over the 3D approach especially in complex dynamic environments. The research model consisting of flight objectives and criteria is developed based on interviews with an experienced military UAV pilot and mission planner to establish realism and relevancy in unmanned aerial vehicle flight planning. Furthermore, this study incorporates one of the most comprehensive set of criteria identified during our literature search. The simulation results clearly show that the 4D path planning approach is able to provide solutions in complex dynamic environments in which the 3D approach could not find a solution.</p>


Sign in / Sign up

Export Citation Format

Share Document